PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Adsorptive removal of a reactive azo dye using polyaniline-intercalated bentonite

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For this study we conducted a series of adsorption experiments to study the adsorption performance of reactive red 2 (RR-2), a typical anionic dye, on polyaniline-intercalated bentonite (Pani-Bent). The adsorbent was characterized by XRD, FTIR, SEM, TEM, and BET. We investigated the influences of several parameters, including pH, reaction time, temperature, inorganic salts, and initial concentrations. The results indicate that the adsorption of RR-2 is better in an acidic solution. Both NaCl and Na₂SO₄ can improve RR-2 uptake. The adsorption process follows the pseudo second-order kinetic model. The non-linear regression method was adopted to analyze the obtained equilibrium data in terms of the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich (D-R), and Flory-Huggins models. The Langmuir isotherm fits the equilibrium data best among the five models, and the adsorption capacity increases from 202.0 to 257.7 mg/g as the temperature increases from 5ºC to 33ºC Pani-Bent can be an efficient adsorbent for adsorption removal of RR-2 from its aqueous solutions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1259-1268,fig.,ref.

Twórcy

autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
  • School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Resources and the Environment, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Environmental and Municipal Engineering, North China University of Water Resources and Electrical Power, Zhengzhou, 450011, PR China
autor
  • School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China

Bibliografia

  • 1. MAHMOUD M.S. Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain. HBRC J. 12, 88, 2016.
  • 2. TAYLOR J.A., KHALID PASHA., PHILLIPS D.A.S. The dyeing of cotton with hetero bi-functional reactive dyes containing both a monochlorotriazinyl and a chloroacetylamino reactive group, Dyes Pigments. 51 (2-3), 145, 2001.
  • 3. RIZK H.F., IBRAHIM S.A., EL-BORAI M.A. Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigments. 112, 86, 2015.
  • 4. KHATRI A., PEERZADA M.H., MOHSIN M., WHITE M. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J. Clean Prod. 87, 50, 2015.
  • 5. ROSA J.M., FILETI A.M.F., TAMBOURGI E.B., SANTANA J.C.C. Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by Ultraviolet/Hydrogen peroxide homogeneous photocatalysis. J. Clean. Prod. 90, 60, 2015.
  • 6. GHOREISHIAN S.M., BADII K., NOROUZI M., RASHIDI A., MONTAZER M., SADEGHI M., VAFAEE M. Decolorization and mineralization of an azo reactive dye using loaded nano-photocatalysts on spacer fabric: Kinetic study and operational factors. J. Taiwan Ins. Chem. Eng. 45, 2436, 2014.
  • 7. WANGPRADIT R., CHITPRASERT P. Chitosan-coated Lentinus polychrous Lév. Integrated biosorption and biodegradation systems for decolorization of anionic reactive dyes. Int. Biodeter. Biodeg. 93, 168, 2014.
  • 8. SHAMSHAD A., MUGHAL M., SHOUKAT U., BALOCH M., KIM S. H. Cationic starch (Q-TAC) pre-treatment of cotton fabric: Influence on dyeing with reactive dye. Carbohyd. Polym. 117, 27, 2015.
  • 9. TIE J.X., JIANG M.B., LI H.C. ZHANG S. ZHANG X.W. A Comparison between moringa oleifera seed presscake extract and polyaluminum chloride in the removal of direct black 19 from synthetic wastewater. Ind. Crop. Prod. 74, 530, 2015.
  • 10. KHAN M.M.R., MUKHLISH M.Z.B., MAZUMDER M.S.I., FERDOUS K., PRASAD D.M.R., HASSAN Z. Uptake of indosol dark-blue GL dye from aqueous solution by water hyacinth roots powder: adsorption and desorption study. Int. J. Environ. Sci. Technol. 11 (4), 1027, 2014.
  • 11. SANKAR M.K., KUMAR K.M., RANGANATHAN B.V. Adsorption of anionic azo dye from aqueous solution using strychnos potatorum linn seeds: isotherm and kinetic studies. Int. J. Environ. Sci. Technol. 12, 2957, 2015.
  • 12. HASSANI A.H, MIRZAYEE R., NASSERI S., BORGHEI M., GHOLAMI M., TORABIFAR B. Nanofiltration process on dye removal from simulated textile waste water. Int. J. Environ. Sci. Technol. 5 (3), 401, 2008.
  • 13. MASMOUDI G., TRABELSI R., ELLOUZE E., AMAR R.B. New treatment at source approach using combination of microfiltration and nanofiltration for dyeing effluents reuse. Int. J. Environ. Sci. Technol. 11 (4), 1007, 2014.
  • 14. DIVYA N., BANSAL A., JANA A.K. Photocatalytic degradation of azo dye orange II in aqueous solutions using copper-impregnated titania. Int. J. Environ. Sci. Technol, 10 (6), 1265, 2013.
  • 15. CHAMJANGALI M.A., BAGHERIAN G., BAHRAMIAN B., RAD B.F. Synthesis and application of multiple rods gold-zinc oxide nanostructures in the photocatalytic degradation of methyl orange. Int. J. Environ. Sci. Techenol. 12 (1), 151, 2015.
  • 16. CHATTERJEE S., MIN W., LEE S.H. Adsorption of congo red by chitosan hydrogel beads impregnatedwith carbon nanotubes. Bioresource Technol, 101 (6), 1800, 2010.
  • 17. NETPRADIT S., THIRAVETYAN P., TOWPRAYOON S. Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res. 37 (4), 763, 2003.
  • 18. OLAJIRE A.A., GIWA A. A., BELLO I.A. Competitive adsorption of dye species from aqueous solution onto melon husk in single and ternary dye systems. Int. J. Environ. Sci. Technol. 12 (3), 939, 2015.
  • 19. ZHANG C., YANG S.G., CHEN H.Z., HE H., SUN C. Adsorption behavior and mechanism of reactive brilliant red X-3B in aqueous solution over three kinds of hydrotalcite-like LDHs. Appl. Surf. Sci. 301, 329, 2014.
  • 20. BARBOOTI M.M., SU H., PUNAMIYA P., SARKAR D. Oxytetracycline sorption onto Iraqi montmorillonite. Int. J. Environ. Sci. Technol. 11 (1), 69, 2014.
  • 21. LIU Z.R., ZHOU S.Q. Adsorption of copper and nickel on Na-bentonite. Process Safe. Environ. Protect. 88 (1), 62, 2010.
  • 22. HOU X.J., LI H.Q., HE P., LI S.P., LIU Q.F., Molecular-level investigation of the adsorption mechanisms of toluene and aniline on natural and organically modified montmorillonite. J. Phys. Chem. 119 (45), 11199, 2015.
  • 23. ZAGHOUANE-BOUDIAF H., BOUTAHAL M., SAHNOUN S., TIAR C., GOMRI F. Adsorption characteristics, isotherm, kinetics, and diffusion of modifiednatural bentonite for removing the 2,4,5-trichlorophenol, App. Clay Sci. 90, 81,2014.
  • 24. TIE J.X., CHEN D.G., ZHAO M.Q., WANG X.L., ZHOU S.G., PENG L.G. Adsorption of Reactive Green 19 from water using Polyaniline/Bentonite. J. Water Reuse Desal. (2016)
  • 25. LIN C.C., LIN Y.S.,HO J.M. Adsorption of Reactive Red 2 from aqueous solutions using Fe₃O₄ nanoparticles prepared by co-precipitation in a rotating packed bed. J. Alloy. Compd. 666, 153, 2016.
  • 26. WU X. B., WU D. C., FU R. W., Studies on the adsorption of reactive brilliant red X-3B dye on organic and carbon aerogels. J. Hazard. Mater. 147 (3), 1028, 2007.
  • 27. THIYAGARAJAN E., SARAVANAN P., DEVI S.S., SARANYA P., GANDHI N.N., RENGANATHAN. Biosorption of reactive red 2 using positively charged metapenaeus monoceros shells. J Saudi Chem Soc, doi:10.1016/j.jscs.2013.05.004
  • 28. CAO C.H., XIAO L., CHEN C.H., SHI X.W., CAO Q.H., GAO L. In situ preparation of magnetic Fe₃O₄/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye. Powder Technol, 260, 90, 2014.
  • 29. QURESHI U.A., GUBBUK I.H., ERSOZ M., Solangi A.R., TAQVI S.I.H., MEMON S.Q. Preparation of polyaniline montmorillonite clay composites for the removal of diethyl hexyl phthalate from aqueous solutions. Sep. Sci. Technol, 51, 214, 2016.
  • 30. Ansari R., Keivani M.B., Delavar A.Fa. Application of polyaniline nanolayer composite for removalof tartrazine dye from aqueous solutions. J. Polym. Res. 18, 1931, 2011.
  • 31. AL-DEGS Y.S., EL-BARGHOUTHI MUSA I., EL-SHEIKH A.H., WALKER G. M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments. 77 (1), 16, 2008.
  • 32. MOMENZADEH H., TEHRANI-BAGH A.R., KHOSRAVI A., GHARANJIG K., HOLMBERG K. Reactive dye removal from wastewater using a chitosan nanodispersion. Desalination. 271 (1-3), 225, 2011.
  • 33. PAL S., PATRA A.S., GHORAI S., SARKAR A.K., MAHATO V., SARKAR S, SINGH R.P. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and congo red dyes, Bioresource Technol. 191, 291, 2015.
  • 34. PATHAKA P.D., MANDAVGANE S.A. Preparation and characterization of raw and carbon from banana peel by microwave activation: Application in citric acid adsorption. J. Environ. Chem. Eng. 3, 2435, 2015.
  • 35. FAKHRI A., ADAMI S. Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J.Taiwan Inst. Chem. Eng. 45, 1001, 2014.
  • 36. FAKHRI A., BEHROUZ S. Comparison studies of adsorption properties of MgO nanoparticles and ZnO-MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology. Process Saf. Environ. Protect. 94, 37, 2015.
  • 37. FAKHRI A. Assessment of Ethidium bromide and Ethidium monoazide bromide removal from aqueous matrices by adsorption on cupric oxide nanoparticles. Ecotox. Environ. Saf. 104, 386, 2014.
  • 38. Wu F.C., Tseng R.L., Juang R.S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366, 2009.
  • 39. Okoye A.I., Ejikeme P.M., Onukwuli O.D. Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech., 7 (4), 793, 2010
  • 40. Fakhri A. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology. Process Saf. Environ. Protect. 93, 1, 2015.
  • 41. ÖRNEK A., ÖZACAR M., ŞENGIL İ.A. Adsorption of lea d onto formaldehyde or sulphuric acid treated acorn waste: Equilibrium and kinetic studies. Biochem. Eng. J. 37 (2), 192, 2007.
  • 42. ÜNLÜ NURI, ERSOZ M. Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Sep. Puri. Technol. 52 (3), 461, 2007.
  • 43. VU D., LI Z.H.Y., ZHANG H.N, WANG W., WANG ZHAOJIE.J., XU X.R., DONG B., WANG C. Adsorption of Cu(II) from aqueous solution by anatase mesoporous TiO₂ nanofibers prepared via electrospinning. J. Colloid Interf. Sci. 367, 429, 2012.
  • 44. DADA A.O., OLALEKAN A.P., OLATUNYA A.M., DADA, O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn²⁺ onto phosphoric acid modified rice husk. IOSR J. App. Chem. 3 (1), 38, 2012.
  • 45. SAADI R., SAADI Z., FAZAELIR., FARD N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media, Korean J. Chem. Eng., 32 (5), 787, 2015.
  • 46. JNR M.H., SPIFF A.I. Equilibrium sorption study of Al³⁺, Co²⁺ and Ag⁺ in aqueous solutions by fluted pumpkin (Telfairia Occidentalis HOOK f) waste biomass. Acta Chim. Slov. 52, 174, 2005.
  • 47. HAMEED B.H., TAN I.A.W., AHMAD A.L. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 144 (2), 235, 2008.
  • 48. SHAN R., YAN L., YANG Y., YANG K., YU S., YU H., ZHU B., DU B. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide. J. Ind. Eng. Chem. 21, 561, 2015.
  • 49. AKAR T., DIVRIKLIOGLU M. Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource Technol. 101 (19), 7271, 2010.
  • 50. GABRIELA G., SELENE M.A. GUELLI U.S., DEBORA O., ANTONIO A.U.S. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye. J. Environ. Manage. 168, 149, 2016.
  • 51. XIAO L., XIONG Y., TIAN S., HE C., SU Q., WEN Z. One-dimensional coordination supramolecular polymer [Cu(bipy)(SO₄)]n as an adsorbent for adsorption and kinetic separation of anionic dyes. Chem. Eng. J. 265, 157, 2015.
  • 52. QIN Q.D., MA J., LIU K. Adsorption of anionic dyes on ammonium-functionalized MCM-41. J. Hazard. Mater. 162 (1), 133, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6e691e95-36fd-4716-b094-9f58b2cd82ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.