PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 3 |

Tytuł artykułu

Effect of copper concentration on micropropagation and accumulation of some metals in the Dendrobium kingianum Bidwill orchid

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study focused on the influence of an increased copper content in the Murashige and Skoog (1962) solid medium on the in vitro plant growth and development of Dendrobium kingianum Bidwill. Sterile explants of pseudobulbs were used for micropropagation of orchid plants on the MS regeneration medium supplemented with 0.5 mg dm-3 NAA and 1.0 mg dm-3 kinetin. Copper (as CuSO4 × 5H2O) was added to all the combinations in concentrations of 0.025 (control), 0.625, 1.25, 2.5 and 5.0 mg dm-3. The results showed that the treatments with 1.25 and 2.5 mg dm-3 stimulated the orchid growth and development in in vitro culture. After eight months of growing in in vitro culture, the highest number of shoots, the longest roots and the heaviest fresh weight of plantlets were obtained in these treatments. In medium with the highest copper concentration (5.0 mg dm-3), a negative influence of the metal on the length of roots and fresh weight of orchids was noted. Spectrophotometric analysis (ASA) showed that the copper and iron accumulation increased in both shoots and roots with the increase in the external Cu level, whereas the zinc and calcium accumulation in these organs decreased. The copper and zinc accumulation in the roots was about 1.5-2.5 times higher than in the shoots, but the iron accumulation was about 3-3.5 times higher. The calcium accumulation in roots was only 5-12% higher than in shoots.

Wydawca

-

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.693-703,fig.,ref.

Twórcy

autor
  • Department of Genetics and Horticultural Plant Breeding, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Department of Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • Amarasinghe A. A. Y. 2009. Effects of copper sulphate and cobalt chloride on in vitro performances of traditional indica rice (Oryza sativa L.) varieties in Sri Lanka. J. Agric. Sci., 4(3): 132-141.
  • Brenn an R. F., Bolland M. D. A. 2006. Zinc sulphate is more effective at producing wheat shoots than zinc oxide in an alkaline soil but both sources are equally effective in an acid soil. Aust. J. Exp. Agric., 46: 1615-1620.
  • Broadley M. R., White P. J., Hamm ond J. P., Zelko I., Lux A. 2007. Zinc in plants. New Phytol., 173: 677-702.
  • Cho M. J., Wen J., Lemaux P. G. 1998. Transformation of recalcitrant barley cultivars Through improvement of regenerative ability and decreased albinism. Plant Sci., 138(2): 229-244.
  • Dahleen L. S. 1995. Improved plant regeneration from barley callus cultures by increased copper levels. Plant Physiol., 78: 4-7.
  • Dospatliev L. 2011. Correlation between soil characteristics and zinc content in the aboveground biomass of Virginia tobacco. Agric. Sci. Technol., 3(1): 55-59.
  • Garcia-Sogo B., Roig L. A., Moreno V. 1991. Enhancement of morphogenetic response in cotyledon- derived explants o Cucumis melo induced by copper ion. Acta Hortic., 289: 229-230.
  • Gori P., Schiff S., Santand rea G., Benn ici A. 1998. Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu-tolerant callus. Plant Cell Tiss. Org. Cult., 53: 161-169.
  • Hirayama T., Kieber J. J., Hirayama N., Kogan M., Guzm an P., Nourizadeh S., Alonso J. M., Dailey W. P., Dancis A., Ecker J. R. 1999. Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 97: 383-393.
  • Hunter J.G., Verghano O. 1953. Trace-element toxicities in oat plants. Ann. Appl. Biol., 40: 761-777.
  • Jankowski K., Kijewski Ł., Skwierawska M., Krzebietke S., Mackiewicz-Walec E. 2014. Effect of sulfur fertilization on the concentrations of copper, zinc and manganese in the roots, straw and oil cake of rapeseed (Brassica napus L. ssp. oleifera Metzg). J. Elem., 19(2): 433-446.DOI: 10.5601/jelem.2013.18.4.552
  • Joshi A., Kothari S. L. 2007. High copper levels in the medium improves shoot bud differentia tion and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tiss. Org. Cult., 88: 127-133.
  • Kothari S. L., Agarwal K., Kumar S. 2004. Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet-Eleusine coracana (L.) Gaertn. In Vitro Cell Dev. Biol-Plant, 40: 515-519.
  • Kowalska U., Górecki R., Janas K., Górecki K. 2009. Effect of increased copper concentrations on deformations of the regenerates of carrot obtained from androgenic embryos. Veget. Crops Res. Bull., 71: 15-23. DOI: 10.2478/v10032-009-0022-y
  • Kowalska U., Szafrańska K., Krzyżanowska D., Kiszczak W., Górecki R., Janas K., Górecka K. 2012. Effect of increased copper ion content in the medium on the regeneration of androgenetic embryos of carrot (Daucus carota L.). Acta Agrobot., 65(2): 76-82.
  • Kumar S., Narula A., Sharma M. P., Srivastava P. S. 2003. Effect of copper and zinc on growth, secondary metabolite content and micropropagation of Tinospora cordifolia: A medicinal plant. Phytomorphology, 53: 79-91.
  • Meesawat U., Srisawat T., Eksomtrmage L., Kanchanapoom K. 2008. Nuclear DNA content of the pigeon orchid (Dendrobium crumentum Sw.). Songklanakarin J. Sci. Technol., 30(3): 277-280.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol., 15: 473-497.
  • Nas M. N. 2004. The effects of elevated myo-inositol and copper on morphogenetic response of hazelnut (Corylus spp.) explants. KSU J. Sci. Engin., 7(1): 116-119.
  • Nirwan R. S., Kothari S. L. 2003. High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cell Dev. Biol-Plant, 39: 161-164.
  • Prażak R. 2001. Micropropagation of Dendrobium kingianum Bidwill orchid. Biotechnologia, 2(53): 144-147. (in Polish)
  • Prażak R. 2014. Influence of cobalt concentration on the growth and development of Dendrobium kingianum Bidwill orchid in an in vitro culture. J. Elem., 19(2): 495-506. DOI: 10.5601/jelem.2013.18.4.366
  • Purnhauser L., Gyulai G. 1993. Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tiss. Org. Cult., 35: 131-139.
  • Rafail S. T., Gharbia H. D., Atheel N. Y. 2012. In vitro morphogenetic response of apple (Malus domestica Borkh.) and pear (Pyrus communis L.) to the elevated levels of copper and myo-inositol. Acta Agrobot., 65(3): 43-48.
  • Saba P. D., Iqbal M., Srivastava P. S. 2000. Effect of ZnSO4 and CuSO4 on regeneration and lepidine content in Lepidium sativum L. Biol. Plant, 43: 253-256.
  • Sahrawat A. K., Suresh C., Chand S. 1999. Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). J. Plant Physiol., 154 (4): 517- 522.
  • Sinha A., Jain R., Kachhwaha S., Kothari S. L. 2010. Optimalization of the level of micronutrient copper in the culture medium improves shoot bud regeneration in Indian Ginseng [Withania somnifera (L.) Dunal]. Natl. Acad. Sci. Lett.-India, 33(1-2): 11-16.
  • Tahiliani S., Kothari S. L. 2004. Increased copper content of the medium improves plant regeneration from immature embryo derived callus of wheat (Triticum aestivum). J. Plant Biochem. Biotechnol., 13(1): 85-88.
  • White P.J., Broadley M.R. 2003. Calcium in plants. Ann. Bot., 92: 487-511.
  • Yang Y. S., Jian Y. Y., Zheng Y. D. 1999. Copper enhances plant regeneration in callus culture of rice. Chinese J. Rice Sci., 13(2): 95-98.
  • Yruela I. 2005. Copper in plants. Braz. J. Plant Physiol., 17(1): 145-156.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6e07129c-e7d6-407e-9abd-b58c70cc6c3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.