PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 08 |

Tytuł artykułu

Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Higher plants evolved mechanisms of uptake, distribution and accumulation of trace metals essential for the proper functioning of the organism (e.g., copper, zinc). Non-essential metals (e.g., cadmium, arsenic, lead) can also enter plant cells using the routes dedicated to the essential ones, because of the shared similar chemical and physical properties. Generally, trace elements are very reactive, able to generate reactive oxygen species and to interact or bind various organic ligands composed of C, H, O, N, P or S. Thus, after entering to the cells, metals are transported and sequestered mainly in a complex form, bound with amino acids, organic acids, peptides or specific metal-binding ligands. Considering diverse properties (e.g., pH value, abundancy of ions, redox state) characterizing cells, tissues and phloem or xylem sap, plants use various ligands to form stable complexes in different conditions. This literature review aims to provide a comprehensive overview on the role of low-molecular weight acids and peptides in trace metals translocation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

08

Opis fizyczny

p.1957-1968,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • Alves A, Nabais C, Goncalves MLS, Correia dos Santos MM (2011) Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum growing on serpentine soils of northeast Portugal. Plant Physiol 168:1715–1722. doi:10.1016/j.jplph.2011.04.004
  • Ando Y, Nagata S, Yanagisawa S, Yoneyama T (2012) Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct Plant Biol 40:89–100. doi:10.1071/FP12158
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324
  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. In, Trace element stress in plants: effects and methodology. J Plant Nutr 3:643–654
  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 155–178
  • Baker AJM, McGrath SP, Sidoli CDM, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49
  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282. doi:10.1016/j.pbi.2007.04.003
  • Brown J (1996) Fe and Ca uptake as related to root-sap and stemexudate citrate in soybeans. Physiol Plant 19:968–976. doi:10.1111/j.1399-3054.1966.tb07087.x
  • Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155. doi:10.1007/BF00196606
  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses and systemic mobility. BMC Plant Biol 10:64. doi:10.1186/1471-2229-10-64
  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem J 87:10–20. doi:10.1094/CCHEM-87-1-0010
  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133. doi:10.1105/tpc.106.041871
  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284
  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120
  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean Soil Air Water 37:304–313
  • Conte SS, Walker Elsbeth L (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476. doi:10.1093/mp/ssr015
  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11. doi:10.1093/aob/mcn207
  • Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-Type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362
  • Diwan H, Ahmad A, Iqbal M (2012) Chromium-induced alterations in photosynthesis and associated attributes in Indian mustard. J Environ Biol 33:239–244
  • Fellet G, Marchiol L (2011) Towards green remediation: metal phytoextraction and growth analysis of Sorghum bicolor under different agronomic managemenet. LCE 2:144–151
  • Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 47:6663. doi:10.1039/b809789e
  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806. doi:10.1104/pp.109.151035
  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. doi:10.1016/j.envexpbot.2012.04.006
  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454. doi:10.1016/j.chemosphere.2012.08.061
  • Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, Kaiser BN, Leigh RA, Tyerman SD (2011) Calcium delivery and storage in plant leaves: exploring the link with water flow. J Exp Bot 62:2233–2250. doi:10.1093/jxb/err111
  • Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531. doi:10.1104/pp.104.045633
  • Grillet L, Ouerdane L, Flis P, Hoang MTT, Isaure MP, Lobinski R, Curie C, Mari S (2013) Ascorbate efflux as a new strategy for iron reduction and transport in plants. J Biol Chem. doi:10.1074/jbc.M113.514828
  • Guelke-Stelling M, von Blanckenburg F (2012) Fe isotope fractionation caused by translocation of iron during growth of bean and oat as models of strategy I and II plants. Plant Soil 352:217–231. doi:10.1007/s11104-011-0990-9
  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395. doi:10.1038/nature06877
  • Harris WR, Sammons RD, Grabiak RC (2012) A speciation model of essential trace metal ions in phloem. J Inorg Biochem 116:140–150. doi:10.1016/j.jinorgbio.2012.07.011
  • Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63. doi:10.1016/j.envexpbot.2010.04.003
  • Hay RW (1984) Bioinorganic chemistry. In: Chemical science. Ellis Horwood Ltd, England. ISBN: 0853127662
  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. doi:10.1111/j.1469-8137.2007.02051.x
  • Haydon MJ, Kawachi M, Wirtz M, Stefan H, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737. doi:10.1105/tpc.111.095042
  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-Type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339. doi:10.1105/tpc.020487
  • Irtelli B, Pertucci WA, Navari-Izzo F (2009) Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J Exp Bot 60:269–277. doi:10.1093/jxb/ern286
  • Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa N (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol 79:583–594. doi:10.1007/s11103-012-9930-1
  • Katayama H, Banba N, Sugimura Y, Tatsumi M, Kusakari S, Oyama H, Nakahira A (2013) Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential. Environ Exp Bot 85:30–35. doi:10.1016/j.envexpbot.2012.06.001
  • Kato M, Ishikawa S, Igarashi K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr 56:839–847. doi:10.1111/j.1747-0765.2010.00514.x
  • Kehr J (2012) Long-distance signaling by small RNAs. In: Kragler F, Huelskamp M (eds) Short and long distance signalling, advances in plant biology. Springer, New York, pp 131–149
  • Kiczka-Cyriac M (2011) Iron isotope fractionation mechanisms of silicate weathering and iron cycling by plants. Dissertation, University of Karlsruhe. doi:10.3929/ethz-a-006353249
  • King RW, Zeevaart JA (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103. doi:10.1104/pp.53.1.96
  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. doi:10.1146/annurev-arplant-042811-105522
  • Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H (2008) Amino acid polymorphisms in strictly conserved domains of a P-Type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980. doi:10.1104/pp.108.119933
  • Kobayashi NI, Tanoi K, Hirose A, Nakanishi TM (2013) Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. Exp Bot 64:507–517. doi:10.1093/jxb/ers344
  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156
  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638. doi:10.1038/379635a0
  • Larbi A, Morales F, Abadia A, Abadia J (2010) Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply. Plant Physiol 167:255–260. doi:10.1016/j.jplph.2009.09.007
  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298. doi:10.1104/pp.105.074815
  • Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206. doi:10.1007/s00018-012-1089-z
  • Lopez-Millan AF, Morales F, Abadia A, Abadia J (2000) Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol 124:873–884. doi:10.1104/pp.124.2.873
  • Lopez-Millan AF, Morales F, Abadia A, Abadia J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498. doi:10.1093/jexbot/52.360.1489
  • Ma JF (2009) Silicon uptake and translocation in plants. In: The Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis: Department of Plant Sciences, UC Davis. Retrieved from: http://escholarship.org/uc/item/3pq8p5p0
  • Maas FM, van de Wetering DAM, van Beusichem ML, Bienfait HF (1988) Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiol 87:167–171. doi:10.1104/pp.87.1.167
  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282
  • Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259. doi:10.1111/j.1365-313X.2008.03410.x
  • Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562. doi:10.1016/j.pbi.2011.07.004
  • Mihucz VG, Tatar E, Virag I, Cseh E, Fodor F, Zaray G (2005) Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Anal Bioanal Chem 383:461–466. doi:10.1007/s00216-005-3325-y
  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381. doi:10.1093/jxb/ers315
  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904. doi:10.1104/pp.108.130294
  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567. doi:10.1021/cr900112r
  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338. doi:10.1105/tpc.109.069401
  • Mullins GL, Sommers LE, Housley TL (1986) Metal speciation in xylem and phloem exudates. Plant Soil 96:377–391. doi:10.1007/BF02375142
  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. doi:10.1007/s10311-010-0297-8
  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963. doi:10.1007/s12010-009-8565-4
  • Palmer CP, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340. doi:10.1038/nchembio.166
  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. doi:10.1016/j.tplants.2008.06.005
  • Pandey N, Singh GK (2012) Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J Environ Biol 33:201–206
  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120. doi:10.1371/journal.pgen.1003120
  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer Verlag, Berlin Heidelberg, pp 121–147. doi:10.1007/978-3-642-38469-1_7
  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. doi:10.1016/j.plantsci.2010.08.016
  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. PNAS 93:3164–3166. doi:10.1073/pnas.93.8.3164
  • Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 93:285–290. doi:10.1016/0958-1669(94)90030-2
  • Rellan-Alvarez R, Giner-Martinez-Sierra J, Orduna J, Orera I, Rodriguez-Castrillon JA, Garcia-Alonso JI, Abadia J, Alvarez-Fernandez A (2009) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102. doi:10.1093/pcp/pcp170
  • Roat-Malone RM (2007) Bioinorganic chemistry: a short course, 2nd edn. Wiley-Interscience A John Wiley, New York
  • Roschzttardtz H, Seguela-Arnaud M, Briat JF, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23:2725–2737. doi:10.1105/tpc.111.088088
  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717. doi:10.1021/es980825x
  • Schmidke I, Kruger C, Frommichen R, Scholz G, Stephan U (1999) Phloem loading and transport characteristics of iron in interaction with plant-endogenous ligands in castor bean seedlings. Physiol Plant 106:82–89. doi:10.1034/j.1399-3054.1999.106112.x
  • Schuler M, Bauer P (2011) Heavy metals need assistance: the contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family. Front Plant Sci. doi:10.3389/fpls.2011.00069
  • Sheible WR, Pant BD, Musialak-Lange M, Nuc P (2011) Nutrient-responsive plant microRNAs. In: Erdmann VA, Barciszewski J (eds) Non coding RNAs in plants, RNA Technologies. Springer-Verlag, Berlin Heidelberg, pp 313-337
  • Siemianowski O, Mills RF, Williams LE, Antosiewicz DM (2011) Expression of the P1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol J 9:64–74. doi:10.1111/j.1467-7652.2010.00531.x
  • Sinclair S, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567
  • Song WY, Choi KS, Kim SY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252. doi:10.1105/tpc.109.070185
  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575
  • Tiffin LO (1996a) Iron translocation. I. Plant culture exudate sampling iron-citrate analysis. Plant Physiol 41:510–514. doi:10.1104/pp.41.3.510
  • Tiffin LO (1996b) Iron translocation. II. Citrate/iron ratios in plant stem exudates. Plant Physiol 41:515–518. doi:10.1104/pp.41.3.515
  • Tiffin LO (1997) Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol 45:280–283. doi:10.1104/pp.45.3.280
  • Uraguchi S, Kamiya T, Sakamoto T, Kasaia K, Satoc Y, Nagamurac Y, Yoshidab A, Kyozukab J, Isikawa S, Fujiwara T (2011) Lowaffinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. PNAS 108:20959–20964. doi:10.1073/pnas.1116531109
  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0
  • Verbruggen N, Hermans C, Schat H (2009a) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x
  • Verbruggen N, Hermans C, Schat H (2009b) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372. doi:10.1016/j.pbi.2009.05.001
  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574
  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899. doi:10.1093/jexbot/52.358.891
  • White MC, Baker FD, Chaney RL, Decker AM (1981) Metal complexation in xylem fluid: II. Theoretical equilibrium model and computational computer program. Plant Physiol 67:301–310. doi:10.1104/pp.67.2.301
  • Williams LE, Pittman JK (2010) Dissecting pathways involved in manganese homeostasis and stress in higher plant cells. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer-Verlag, Berlin Heidelberg, pp 95–117
  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78. doi:10.1111/j.1469-8137.2008.02638.x
  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179. doi:10.1016/j.sajb.2009.10.007
  • Yamaji N, Chuba Y, Mitani-Ueno N, Feng Ma J (2012) Functional characterization of a silicon transporter gene implicated in Si distribution in barley. Plant Physiol 160:1491–1497. doi:10.1104/pp.112.204578
  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17. doi:10.1007/s0012Fs00128-010-0171-1
  • Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2010) Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J Plant Physiol 167:1239–1247. doi:10.1016/j.jplph.2010.04.012

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6c90b702-616b-43e3-aa1d-99c932586593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.