PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 1 |

Tytuł artykułu

Catshark egg capsules from a Late Eocene deep-water methane-seep deposit in western Washington State, USA

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fossil catshark egg capsules, Scyliorhinotheca goederti gen. et sp. nov., are reported from a Late Eocene deep−water methane−seep calcareous deposit in western Washington State, USA. The capsules are preserved three−dimensionally and some show mineralized remnants of the ribbed capsule wall consisting of small globular crystals that are embedded in a microsparitic matrix. The globules are calcitic, but a strontium content of 2400–3000 ppm suggests that they were origi− nally aragonitic. The carbonate enclosing the egg capsules, and the capsule wall itself, show 13C values as low as −36.5‰, suggesting that formation was induced by the anaerobic oxidation of methane and hence in an anoxic environ− ment. We put forward the following scenario for the mineralization of the capsule wall: (i) the collagenous capsules expe− rienced a sudden change from oxic to anoxic conditions favouring an increase of alkalinity; (ii) this led to the precipitation of aragonitic globules within the collagenous capsule wall; (iii) subsequently the remaining capsule wall was mineralized by calcite or aragonite; (iv) finally the aragonitic parts of the wall recrystallized to calcite. The unusual globular habit of the early carbonate precipitates apparently represents a taphonomic feature, resulting from mineralization mediated by an organic matrix. Taphonomic processes, however, are at best contributed to an increase of alkalinity, which was mostly driven by methane oxidation at the ancient seep site.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.77-84,fig.,ref.

Twórcy

autor
  • Geowissenschaftliches Zentrum, Abteilung Geobiologie and Courant Research Center Geobiology, Georg-August Universität Gottingen, Goldschmidtstr.3, 37077 Gottingen, Germany
autor
  • Department fur Geodynamik und Sedimentologie, Erdwissenschaftliches Zentrum, Universitat Wien, Althanstr.14, 1090 Wien, Austria
autor
  • Geowissenschaftliches Zentrum, Abteilung Geobiologie and Courant Research Center Geobiology, Georg-August Universität Gottingen, Goldschmidtstr.3, 37077 Gottingen, Germany

Bibliografia

  • Able, K.W. and Flescher, D. 1991. Distribution and habitat of chain dogfish, Scyliorhinus retifer, in the mid−Atlantic bight. Copeia 1991: 231–234.
  • Adnet, S., Cappetta, H., and Reynders, J. 2008. Contribution of Eocene sharks and rays from southern France to the history of deep−sea selachians. Acta Geologica Polonica 58: 257–260.
  • Bayon, G., Pierre, C., Etoubleau, J., Voisset, M., Cauquil, E., Marsset, T., Sultan, N., Le Drezen, E., and Fouquet, Y. 2007. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241: 93–109.
  • Bock, W. 1949. Triassic chimaeroid egg capsules from the Connecticut Valley. Journal of Paleontology 23: 515–517.
  • Brandon, M.T. and Vance, J.A. 1992. Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. American Journal of Science 292: 565–636.
  • Briggs, D.E.G. and Kear, A.J. 1993. Fossilization of soft tissue in the laboratory. Science 259: 1439–1442.
  • Brown, R.W. 1946. Fossil egg capsules of chimaeroid fishes. Journal of Paleontology 20: 261–266.
  • Buczynski, C. and Chafetz, H.S. 1991. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. Journal of Sedimentary Research 61: 226–233.
  • Buggisch, W. and Krumm, S. 2005. Palaeozoic cold seep carbonates from Europe and North Africa-an integrated isotopic and geochemical approach. Facies 51: 566–583.
  • Campbell, K.A., Farmer, J.D., and Des Marais, D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2: 63–94.
  • Compton, J.S. 1992. Early diagenesis and the origin of diagenetic carbonate in sediment recovered from the Argo Basin, Northeastern Indian Ocean (Site 765). Proceedings of the Ocean Drilling Program, Scientific Results 123: 77–88.
  • Ebert, D.A., Compagno, L.J.V., and Cowley, P.D. 2006. Reproductive biology of catsharks (Chondrichthyes: Scyliorhynidae) off the west coast of southern Africa. ICES Journal of Marine Science 63: 1053–1965.
  • Etnoyer, P. and Warrenchuk, J. 2007. A catshark nursery in a deep gorgonian field in the Mississippi Canyon, Gulf of Mexico. Bulletin of Marine Science 81: 553–559.
  • Fernández−Díaz, L., Putnis, A., Prieto, M., and Putnis, C.V. 1996. The role of magnesium in the crystallization of calcite and aragonite in a porous medium. Journal of Sedimentary Research 66: 482–491.
  • Fischer, J. and Kogan, I. 2008. Elasmobranch egg capsules Palaeoxyris, Fayolia and Vetacapsula as subject of palaeontological research—an annotated bibliography. Freiberger Forschungshefte C 528: 75–91.
  • Flammang, B.E., Ebert, D.A., and Cailliet, G.M. 2007. Egg cases of the genus Apristurus (Chondrichthyes: Scyliorhinidae): Phylogenetic and ecological implications. Zoology 110: 308–317.
  • Goedert, J.L. and Benham, S.R. 2003. Biogeochemical processes at ancient methane seeps: The Bear River site in southwestern Washington. Geological Society of America Field Guide 4: 201–208.
  • Goedert, J.L. and Squires, R.L. 1990. Eocene deep−sea communities in localized limestones formed by subduction−related methane seeps, south−western Washington. Geology 18: 1182–1185.
  • Gomes, U.L. and de Carvalho, M.R. 1995. Egg capsules of Schroederichthys tenuis and Scyliorhinus haeckelii (Chondrichthyes, Scyliorhinidae). Copeia 1: 232–236.
  • Haas, A., Little, C.T.S., Sahling, H., Bohrmann, G., and Peckmann, J. 2009. Mineralization of vestimentiferan tubes at methane seeps on the Congo deep sea fan. Deep−Sea Research I 56: 283–293.
  • Hashimoto, J., Ohta, S., Tanaka, T., Hotta, H., Matsuzawa, S., and Sakai, H. 1989. Deep−sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 71: 179–192.
  • Iglésias, S.P., Du Buit, M.−H., and Nakaya, K. 2002. Egg capsules of deep−sea catsharks from eastern North Atlantic, with first descriptions of the capsule of Galeus murinus and Apristurus aphyodes (Chondrichthyes: Scyliorhinidae). Cybium 26: 59–63.
  • Iglésias, S.P., Nakaya,K., and Stehmann, M. 2004. Apristurus melanoasper, a new species of deep−water catshark from the North Atlantic (Chondrichthyes: Carcharhiniformes: Scyliorhinidae). Cybium 28: 345–356.
  • Kiel, S. 2006. New records and species of mollusks from Tertiary cold−seep carbonates in Washington State, USA. Journal of Paleontology 80: 121–137.
  • Kiel, S. 2010a. An eldorado for paleontologists: the Cenozoic seep deposits of western Washington State, USA. In: S. Kiel (ed.), The Vent and Seep Biota. Topics in Geobiology, 433–448. Springer, Heidelberg.
  • Kiel, S. 2010b. On the potential generality of depth−related ecologic structure in cold−seep communities: Cenozoic and Mesozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 245–257.
  • MacAvoy, S.E., Carney, R.S., Fisher, C.R., and Macko, S.A. 2002. Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Marine Ecology Progress Series 225: 65–78.
  • MacAvoy, S.E., Macko, S.A., and Carney, R.S. 2003. Links between chemosynthetic production and mobile predators on the Louisiana continental slope: stable carbon isotopes of specific fatty acids. Chemical Geology 201: 229–237.
  • MacNeil, M.A., Skomal, G.B., and Fisk, A.T. 2005. Stable isotopes from multiple tissues reveal diet switching in sharks. Marine Ecology Progress Series 302: 199–206.
  • Mernagh, T.P. and Trudu, A.G. 1993. A laser Raman microprobe study of some geologically important sulphide minerals. Chemical Geology 103: 113–127.
  • Ohta, S. and Laubier, L. 1987. Deep biological communities in the subduction zone of Japan from bottom photographs taken during “Nautile” dives in the Kaiko project. Earth and Planetary Science Letters 83: 329–342.
  • Okada, H. and Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low−latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology 5: 321–325.
  • Peckmann, J., Campbell, K.A., Walliser, O.H., and Reitner, J. 2007. A Late Devonian hydrocarbon−seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22: 114–122.
  • Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B.T., Heinicke, C., Hoefs, J., and Reitner, J. 2001. Methane−derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology 177: 129–150.
  • Peckmann, J. and Thiel, V. 2004. Carbon cycling at ancient methane−seeps. Chemical Geology 205: 443–467.
  • Rigby, J.K. and Jenkins, D.E. 1983. The Tertiary sponges Aphrocallistes and Eurete from western Washington and Oregon. Contributions in Science, Natural History Museum of Los Angeles County 344: 1–13.
  • Rusaouën, M., Pujol, J.−P., Bocquet, J., Veillard, A., and Borel, J.−P. 1976. Evidence of collagen in the egg capsule of the dogfish, Scyliorhinus canicula. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 53: 539–543.
  • Sato, K., Nakaya, K., and Stewart, A.L. 1999.Anew species of the deep−water catshark genus Apristurus from New Zealand waters (Chondrichthyes: Scyliorhinidae). Journal of the Royal Society of New Zealand 29: 325–335.
  • Savard, M.M., Beauchamp, B., and Veizer, J. 1996. Significance of aragonite cements around Cretaceous marine methane seeps. Journal of Sedimentary Research 66: 430–438.
  • Sellanes, J., Quiroga, E., and Neira, C. 2008. Megafauna community structure and trophic relationships at the recently discovered Concepción methane seep area, Chile, ~36ES. ICES Journal of Marine Science 65: 1102–1111.
  • Springer, S. 1966. A review of western Atlantic cat sharks, Scyliorhinidae, with descriptions of a new genus and five new species. Fishery Bulletin 65: 581–624.
  • Squires, R.L. 1995. First fossil species of the chemosynthetic−community gastropod Provanna: Localized cold−seep limestones in Upper Eocene and Oligocene rocks, Washington. The Veliger 38: 30–36.
  • Squires, R.L. and Goedert, J.L. 1991. New Late Eocene mollusks from localized limestone deposits formed by subduction−related methane seeps, southwestern Washington. Journal of Paleontology 65: 412–416.
  • Steininger, F. 1966. Zur Kenntnis fossiler Euselachier−Eikapseln aus dem Ober−Oligozän von Mitteleuropa. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 6: 37–49.
  • Stewart, R.J. and Brandon, M.T. 2004. Detrital−zircon fission−track ages for the “Hoh Formation”: Implications for late Cenozoic evolution of the Cascadia subduction wedge. Geological Society of America Bulletin 116: 60–75.
  • Treude, T., Kiel, S., Linke, P., Peckmann, J., and Goedert, J.L. 2011. Elasmobranch egg capsules associated with modern and ancient cold seeps: A nursery for non−seep marine predators. Marine Ecology Progress Series 437: 175–181.
  • Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology. 482 pp. Blackwell Science, Oxford.
  • Turnipseed, M., Jenkins, C.D., and Van Dover, C.L. 2004. Community structure in Florida Escaprment seep and Snake Pit (Mid−Atlantic Ridge) vent mussel beds. Marine Biology 145: 121–132.
  • Urmos, J., Sharma, S.K., and Mackenzie, F.T. 1991. Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist 76: 641–646.
  • Wells, R.E. 1989. Geologic map of the Cape Disappointment – Naselle River area, Pacific and Wahkiakum Counties, Washington. U.S. Geological Survey Miscellaneous Investigations Map I−1832. U.S. Government Printing Office, Washington.
  • Welton, B.J. 1972. Fossil sharks in Oregon. The Ore Bin 34: 161–170.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6b8ba4f0-ed42-4d96-8daa-02122dd934d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.