PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 07 |

Tytuł artykułu

Functional characterization of a grape heat stress transcription factor VvHsfA9 in transgenic Arabidopsis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant heat stress transcription factor (HSF) family consists of a group of proteins participating in various signal transduction processes. However, only little information regarding HSF genes is available in grape. In this study, we reported the functional analysis of VvHsfA9 (Vitis vinifera HsfA9) in Arabidopsis. VvHsfA9 and HaHsfA9 (Helianthus annuus HsfA9) shared 34.72 % identity over the whole amino acid sequence. We discovered that the C-terminal part (VvHsfA9262–340) is required for the transcriptional activation activity of VvHsfA9. Overexpression of VvHsfA9 in Arabidopsis confers enhanced seed germination under unstressed conditions and late-flowering phenotypes. However, no other stress tolerance was observed during post-germination stage. These results suggest that VvHsfA9 functions as a seedspecific transcription factor in positive modulation of seed germination and may negatively regulate flowering time of plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

07

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
autor
  • Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China

Bibliografia

  • Almoguera C (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277(46):43866–43872
  • Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol 9(1):75
  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf K-D (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487
  • Baniwal SK, Chan KY, Scharf KD, Nover L (2007) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem 282(6):3605–3613
  • Barros MD, Czarnecka E, Gurley WB (1992) Mutational analysis of a plant heat shock element. Plant Mol Biol 19:665–675
  • Bharti K (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16(6):1521–1535
  • Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf K-D (2000) Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J 22(4):355–365
  • Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J (2010) Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor mediated seed longevity. Proc Natl Acad Sci USA 107:21908–21913
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743
  • Diaz-Martin J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J (2005) Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol 139(3):1483–1494
  • Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The Role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12:265–278
  • Kim S, Choi H, Ryu H, Park JH, Kim MD, Kim SY (2004) ARIA, an arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol 136(3):3639–3648
  • Kotak S, Port M, Ganguli A, Bicker F, Von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39(1):98–112
  • Kotak S, Vierling E, Baumlein H, Pv Koskull-Doring (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19(1):182–195
  • Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 8(1):e54880
  • Lin CH, Lin G, Chang CP, Wang CC (2010) A tryptophan-rich peptide acts as a transcription activation domain. BMC Mol Biol 11:85
  • Mishra SK (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567
  • Nakai A (1999) New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 4(2):86–93
  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta Gene Regul Mech 1819(2):97–103
  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48(4):535–547
  • Nover L (1987) Expression of heat stress genes in homologous and heterologous systems. Enzyme Microb Technol 9(3):130–144
  • Nover L, Scharf KD, Gagliardi D, Vergne PC-V, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1(4):215–223
  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177–189
  • Pelham RHB (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30:517–528
  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20(10):2729–2745
  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54(6):1004–1014
  • Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22(4):1143–1160
  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Colloquium paper: dual function of an Arabidopsis transcription factor DREB2A in waterstress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 103(49):18822–18827
  • Scharf K-D, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251
  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2011) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta Gene Regul Mech 1819(2):104–119
  • Schmidt R, Schippers JHM, Welker A, Mieulet D, Guiderdoni E, Mueller-Roeber B (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp.japonica. AoB Plants
  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, Koskull- Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60(5):759–772
  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274
  • Storozhenko S, Pauw PD, Montagu MV, Inze´ D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118:1005–1014
  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599
  • Treuter E, Nover L, Ohme K, Scharf KD (1993) Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet 240:113–125
  • von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12(10):452–457
  • Ward JM (2006) A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell 18(1):29–39
  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22(6):1733–1748
  • Xiong A, Yao Q, Peng R, Li X, Fan H, Cheng Z, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based twostep DNA synthesis method for long gene sequences. Nucleic Acids Res 32(12):e98
  • Xiong A, Yao Q, Peng R, Duan H, Li X, Fan H, Cheng Z, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1(2):791–797
  • Yamanouchi U (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci 99(11):7530–7535
  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription
  • factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368(3):515–521

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6a529fbc-602f-41dd-a6c1-6eed347240d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.