PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 2 |

Tytuł artykułu

Teorie dotyczące naturalnych procesów kruszenia mięsa po uboju

Treść / Zawartość

Warianty tytułu

EN
Theories concerning natural tenderization processes in post mortem meat

Języki publikacji

PL

Abstrakty

PL
Spośród różnych właściwości mięsa wpływających na jego jakość, dla konsumenta najważniejsza jest kruchość. W czasie pośmiertnej konwersji mięśni do mięsa zachodzi złożony proces tenderyzacji. Od dawna mechanizm tenderyzacji mięsa był przedmiotem szczególnego zainteresowania badaczy z tego obszaru wiedzy. Pomimo intensywnych badań istota tych procesów nie została dokładnie poznana. W pracy przedstawiono główne teorie dotyczące mechanizmów tenderyzacji mięsa, zarówno nieenzymatyczne (wapniowa teoria kruszenia mięsa, wpływ ciśnienia osmotycznego), jak i enzymatyczne (procesy z udziałem proteolitycznych enzymów endogennych: kalpain i kalpastatyny, kaspaz, katepsyn, proteasomów, macierzy metaloproteaz). Wymienione enzymy prawdopodobnie uczestniczą w pośmiertnej proteolizie białek mięśniowych. Dokonano ponadto omówienia potencjalnych markerów z różnych szlaków metabolicznych, biorących udział w kształtowaniu kruchości mięsa post mortem.
EN
Of the various meat properties, which impact its quality, tenderness is the most important for the consumer. During the post mortem conversion of muscle to meat, a complex process of meat tenderization occurs. For a long time now, researchers in this field of science have been particularly interested in the mechanism of meat tenderization. Despite intensive studies, the crux of those processes is not thoroughly recognized. In the review paper, main theories are presented, which refer to the mechanisms of meat tenderization, both the non-enzymatic (calcium theory of meat tenderization, effect of osmotic pressure) and the enzymatic theories (processes including proteolytic endogenous enzymes: calpains and calpastatin, caspases, cathepsins, proteasomes, and matrix metalloproteases). The enzymes in question are likely to be engaged in the post mortem proteolysis of muscle proteins. Moreover, potential markers are discussed of different metabolic pathways that participate in developing the post mortem meat tenderness.

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

s.34-48,tab.,bibliogr.

Twórcy

autor
  • Katedra Towaroznawstwa i Przetwórstwa Surowców Zwierzęcych, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
  • Katedra Towaroznawstwa i Przetwórstwa Surowców Zwierzęcych, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
  • Katedra Hodowli i Ochrony Zasobów Genetycznych Bydła, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin

Bibliografia

  • [1] Alderton A. L., Means W. J., Kalchayanand N., Mccormick R. J., Miller K. W.: Bovine metalloprotease characterization and in vitro connective tissue degradation. J. Anim. Sci., 2004, 82, 1475 - 1481.
  • [2] Arrigo A. P.: In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J. Cell. Biochem., 2005, 94, 241 - 246.
  • [3] Barbut S., Sosnicki A. A., Lonergan S. M., Knapp T., Ciobanu D. C., Gatcliffe L. J.: Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci., 2008, 79, 46 - 63.
  • [4] Becila S., Herrera-Mendez C. H., Coulis G., Labas R., Astruc T., Picard B., Boudjellal A., Pelissier P., Bremaud L., Ouali A.: Post mortem muscle cells die through apoptosis. Eur. Food Res. Technol., 2010, 231, 485 - 493.
  • [5] Beere H. M.: Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J. Clin. Invest., 2005, 115, 2633 - 2639.
  • [6] Bernard C., Cassar-Malek I., Le Cunff M., Dubroeucq H., Renand G., Hocquette J. F.: New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem., 2007, 55, 5229 - 5237.
  • [7] Bjarnadottir S. G., Hollung K., Faergestad E. M., Veiseth-Kent E.: Proteome changes in bovine longissimus thoracis muscle during the first 48 h postmortem: Shifts in energy status and myofibrillar stability. J. Agric. Food Chem., 2010, 58, 7408 - 7414.
  • [8] Bjarnadottir S. G., Hollung K., Hoy M., Bendixen E., Codrea M. C., Veiseth-Kent E.: Changes in protein abundance between tender and tough meat from bovine longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis. J. Anim. Sci., 2012, 90, 2035 - 2043.
  • [9] Bouley J., Chambon C., Picard B.: Mapping of bovine skeletal muscle proteins using twodimensional gel electrophoresis and mass spectrometry. Proteomics, 2004, 4, 1811 - 1824.
  • [10] Bowker B. C., Eastridge J. S., Paroczay E. W., Callahan J. A., Solomon M. B.: Aging/tenderization mechanisms. In: Handbook of Meat Processing. Ed. F. Toldrá. Blackwell Publishing, Ames, Iowa, 2010, pp. 87 - 104.
  • [11] Casas E., White S. N., Wheeler T. L., Shackelford S. D., Koohmaraie M., Riley D. G.: Effects of calpastatin and l-calpain markers in beef cattle on tenderness traits. J. Anim. Sci., 2006, 84, 520 - 525.
  • [12] Choi Y. M., Lee S. H., Choe J. H., Rhee M. S., Lee S. K., Joo S. T., Kim B. C.: Protein solubility is related to myosin isoforms, muscle fiber types, meat quality traits, and postmortem protein changes in porcine longissimus dorsi muscle. Livestock Sci., 2010, 127, 183 - 191.
  • [13] Dahlmann B., Ruppert T., Kloetzel P. M., Kuehn L.: Subtypes of 20S proteasomes from skeletal muscle. Biochimie, 2001, 83, 295 - 299.
  • [14] D'alessandro A., Zolla L.: Meat science: From proteomics to integrated omics towards system biology. J. Proteom., 2013, 78, 558 - 577.
  • [15] Ding W. X., Shen H. M., Ong C. N.: Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem. Bioph. Res. Co., 2002, 291, 321 - 331.
  • [16] Domaradzki P., Skałecki P., Florek M., Litwińczuk Z.: Związek kolagenu z wybranymi parametrami technologicznymi mięsa cielęcego. Żywność. Nauka. Technologia. Jakość, 2010, 4, 50 - 62.
  • [17] Dubin G.: Proteinaceous cysteine protease inhibitors. Cell. Mol. Life Sci., 2005, 62, 653 - 669.
  • [18] Dutaud D., Aubry L., Sentandreu M. A., Ouali A.: Bovine muscle 20S proteasome: I. Simple purification procedure and enzymatic characterization in relation with post mortem conditions. Meat Sci., 2006, 74, 327 - 336.
  • [19] Florek M., Litwińczuk Z.: Konwersja mięśni do mięsa - znaczenie apoptozy. Med. Weter., 2011, 67 (8), 531 - 535.
  • [20] Fuentes-Prior P., Salvesen G. S.: The protein structures that shape caspase-activity, specificity, activation, and inhibition. Biochem. J., 2004, 384, 201 - 232.
  • [21] Gagaoua M., Boudida Y., Becila S., Picard B., Boudjellal A., Sentandreu M. A., Ouali A.: New caspases' inhibitors belonging to the serpin superfamily: A novel key control point of apoptosis in mammalian tissues. Adv. Biosci. Biotech., 2012, 3, 740 - 750.
  • [22] Geesink G. H., Kuchay S., Chishti A. H., Koohmaraie M.: l-Calpain is essential for post mortem proteolysis of muscle proteins. J. Anim. Sci., 2006, 84, 2834 - 2840.
  • [23] Goll D. E., Thompson V. F., Li H. Q., Wei W., Cong J. The calpain system. Physiol. Rev., 2003, 83, 731 - 801.
  • [24] Hamill R. M., Mcbryan J., Mcgee C., Mullen A. M., Sweeney T., Talbot A., Cairns M. T., Davey G. C.: Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci., 2012, 92, 440 - 450.
  • [25] Harper G. S.: Trends in skeletal muscle biology and the understanding of toughness in beef. Aust. J. Agric. Res., 1999, 50, 1105 - 1129.
  • [26] Herrera-Mendez C.H., Becila S., Coulis G., Sentandreu M. A., Aubry L., Ouali A.: Purification and partial characterization of antithrombin III from bovine skeletal muscle and possible role of thrombin in post mortem apoptosis development and in efficiency of low voltage electrical stimulation. Food Res. Int., 2010, 43, 356 - 363.
  • [27] Hollung K., Veiseth E., Jia X., Faergestad E. M., Hildrum K. I.: Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci., 2007, 77, 97 - 104.
  • [28] Hopkins D. L., Martin L., Gilmour A. R.: The impact of homogenizer type and speed on the determination of myofibrillar fragmentation. Meat Sci., 2004, 67, 705 - 710.
  • [29] Huff-Lonergan E., Mitsuhashi T., Beekman D. D., Parrish F. C. Jr., Olson D. G., Robson R. M.: Proteolysis of specific muscle structural proteins by μ-calpain at low pH and temperature is similar to degradation in post mortem bovine muscle. J. Anim. Sci., 1996, 74, 993 - 1008.
  • [30] Huff-Lonergan E., Zhang W., Lonergan S. M.: Biochemistry of post mortem muscle - Lessons on mechanisms of meat tenderization. Meat Sci., 2010, 86, 184 - 195.
  • [31] Iwanowska A., Grześ B., Mikołajczak B., Iwańska E., Juszczuk-Kubiak E., Rosochacki S. J., Pospiech E.: Impact of polymorphism of the regulatory subunit of the mu-calpain (CAPN1S) on the proteolysis process and meat tenderness of young cattle. Mol. Biol. Rep., 2011, 38, 1295 - 1300.
  • [32] Jia X., Ekman M., Grove H., Faergestad E. M., Aass L., Hildrum K. I., Hollung K.: Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J. Prot. Res., 2007, 6, 2720 - 2731.
  • [33] Jia X., Hildrum K. I., Westad F., Kummen E., Aass L., Hollung K.: Changes in enzymes associated with energy metabolism during the early post mortem period in longissimus thoracis bovine muscle analyzed by proteomics. J. Prot. Res., 2006, 5, 1763 - 1769.
  • [34] Jia X., Veiseth-Kent E., Grove H., Kuziora P., Aass L., Hildrum K.I., Hollung K.: Peroxiredoxin-6 - A potential protein marker for meat tenderness in bovine longissimus thoracis muscle. J. Anim. Sci., 2009, 87, 2391 - 2399.
  • [35] Juszczuk-Kubiak E., Słoniewski K., Oprządek J., Wicińska K., Połoszynowicz J., Rosochacki S.: The effect of polymorphisms in the intron 12 of CAST gene on meat quality of young bulls. Anim. Sci. Pap. Rep., 2009, 27, 4, 281 - 292.
  • [36] Kamradt M. C., Chen F., Sam S., Cryns V. L.: The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J. Biol. Chem., 2002, 277, 38731 - 38736.
  • [37] Karumendu L. U., Van De Ven R., Kerr M. J., Lanza M., Hopkins D. L.: Particle size analysis of lamb meat: Effect of homogenization speed, comparison with myofibrillar fragmentation index and its relationship with shear force. Meat Sci., 2009, 82, 425 - 431.
  • [38] Kemp C. M., Parr T.: Advances in apoptotic mediated proteolysis in meat tenderization. Meat Sci., 2012, 92, 252 - 259.
  • [39] Kemp C. M., Sensky P. L., Bardsley R. G., Buttery P. J., Parr T.: Tenderness - An enzymatic view. Meat Sci., 2010, 84, 248 - 256.
  • [40] Kim G. D., Jeong J. Y., Moon S. H., Hwang Y. H., Joo S. T.: Influences of carcass weight on histochemical characteristics and meat quality of crossbred (Korean native black pig × Landrace) pigs. Proc. 55th Inter. Congress Meat Sci. Techn., Copenhagen, Denmark, 2009, vol. PS1.05a.
  • [41] Kitamura S., Kudo K., Chikuni K., Watanabe I., Nishimura T.: Actions of cathepsins on troponin T during postmortem aging of porcine muscle. Anim. Sci. J., 2010, 81, 501 - 505.
  • [42] Koohmaraie M.: The Role of Endogenous Proteases in Meat Tenderness. Reciprocal Meat Conf. Proc., 1988, vol. 41, pp. 89 - 100.
  • [43] Koohmaraie M.: Muscle proteinases and meat aging. Meat Sci., 1994, 36, 93-104.
  • [44] Koohmaraie M.: Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci., 1996, 43 (S), 193 - 201.
  • [45] Koohmaraie M., Geesink G. H.: Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci., 2006, 74, 34 - 43.
  • [46] Lamare M., Taylor R. G., Farout L., Briand Y., Briand M.: Changes in proteasome activity during post mortem aging of bovine muscle. Meat Sci., 2002, 61, 199 - 204.
  • [47] Lametsch R., Lonergan S., Huff-Lonergan E.: Disulfide bond within μ-calpain active site inhibits activity and autolysis. Biochim. Biophy. Acta, 2008, 1784, 1215 - 1221.
  • [48] Laville E., Sayd T., Morzel M., Blinet S., Chambon C., Lepetit J., Renand G., Hocquette J. F.: Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J. Agric. Food Chem., 2009, 57, 10755 - 10764.
  • [49] Lomiwes D., Farouk M. M., Frost D. A., Dobbie P. M., Young O. A.: Small heat shock proteins and toughness in intermediate pHu beef. Meat Sci., 2013, 95, 472 - 479.
  • [50] Lomiwes D., Farouk M. M., Wiklund E., Young O. A.: Small heat shock proteins and their role in meat tenderness: A review. Meat Sci., 2014, 96, 26 - 40.
  • [51] Lund M. N., Heinonen M., Baron C. P., Estévez M.: Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res., 2011, 55, 83 - 95.
  • [52] Mikami M., Whiting A. H., Taylor M. A. J., Maciewicz R. A., Etherington D. J.: Degradation of myofibrils from rabbit, chicken and beef by cathepsin l and lysosomal lysates. Meat Sci., 1987, 21, 8197.
  • [53] Morzel M., Terlouw C., Chambon C., Micol D., Picard B.: Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d'Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci., 2008, 78, 297 - 304.
  • [54] Nishimura T., Hattori A., Takahashi K.: Structural weakening of intramuscular connective tissue during conditioning of beef. Meat Sci., 1995, 39, 127 - 133.
  • [55] Nishimura T., Hattori A., Takahashi K.: Relationship between degradation of proteoglycans and weakening of the intramuscular connective tissue during post-mortem ageing of beef. Meat Sci., 1996, 42, 251 - 260.
  • [56] Novakofski J., Brewer M. S.: The paradox of toughening during the aging of tender steaks. J. Food Sci., 2006, 71, 473 - 479.
  • [57] O’Halloran G. R., Troy D. J., Buckley D. J., Reville W. J.: The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Sci., 1997, 47, 187 - 210.
  • [58] Olson S. T., Gettins P. G.: Regulation of proteases by protein inhibitors of the serpin superfamily. Prog. Mol. Biol. Transl. Sci., 2011, 99, 185 - 240.
  • [59] Orrenius S., Zhivotovsky B., Nicotera P.: Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol., 2003, 4, 552 - 565.
  • [60] Ouali A.: Meat tenderization: Possible causes and mechanisms. J. Muscle Foods, 1990, 1, 129 - 165.
  • [61] Ouali A., Gagaoua M., Boudida Y., Becila S., Boudjellal A., Herrera-Mendez C. H., Sentandreu M. A.: Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanism involved. Meat Sci., 2013, 95, 854 - 870.
  • [62] Ouali A., Herrera-Mendeza C. H., Coulisa G., Becilab S., Boudjellalb A., Aubrya L., Sentandreu M. A.: Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci., 2006, 74, 44 - 58.
  • [63] Ouali A., Talmant A.: Calpains and calpastatin distribution in bovine, porcine and ovine skeletal muscles. Meat Sci., 1990, 28, 331 - 348.
  • [64] Ouali A., Vignon X., Bonnet M.: Osmotic pressure changes in postmortem muscles: Factors of variation and possible causative agents. Proc. 37th Int. Cong. Meat Sci. Techn., 1991, 452 - 456.
  • [65] Pambuka S. E, Adebiyi A. P., Muramoto K., Naudé R. J.: Purification and partial characterisation of a matrix metalloproteinase from ostrich skeletal muscle, and its activity during meat maturation. Meat Sci., 2007, 76, 481 - 488.
  • [66] Polati R., Menini M., Robotti E., Millioni R., Marengo E., Novelli E., Balzan S., Cecconi D.: Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem., 2012, 135, 2052 - 2069.
  • [67] Purslow P. P., Archile-Contreras A. C., Cha M. C.: Meat Science and Muscle Biology Symposium: Manipulating meat tenderness by increasing the turnover of intramuscular connective tissue. J. Anim. Sci., 2012, 90, 950 - 959.
  • [68] Raynaud P., Gillard M., Parr T., Bardsley R., Amarger V., Leveziel H.: Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch. Bioch. Bioph., 2005, 440, 46 - 53.
  • [69] Rosochacki S. J., Juszczuk-Kubiak E., Bartoň L., Sakowski T., Połoszynowicz J., Baranowski A., Matejczyk M.: Preliminary observations upon relation between the G77A polymorphism in CATD gene and lysosomal proteinases activity and sensory traits of meat from bulls of three breeds. Anim. Sci. Pap. Rep., 2008, 26, 1, 25 - 35.
  • [70] Sandri M., Carraro U.: Apoptosis of skeletal muscles during development and disease. Int. J. Biochem. Cell Biol., 1999, 31, 1373 - 1390.
  • [71] Sawdy J. C., Kaiser S. A., St-Pierre N. R., Wick M. P.: Myofibrillar 1-D fingerprints and myosin heavy chain MS analyses of beef loin at 36h post mortem correlate with tenderness at 7 days. Meat Sci., 2004, 67, 421 - 426.
  • [72] Sentandreu M. A., Coulis G., Ouali A.: Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci. Tech., 2002, 13, 400 - 421.
  • [73] Shackelford S. D., Koohmaraie M., Whipple G., Wheeler T. L., Miller M. F., Crouse J. D.: Predictors of beef tenderness: Development and verification. J. Food Sci., 1991, 56, 1130 - 1135.
  • [74] Smuder A. J., Kavazis A. N., Hudson M. B., Nelson W. B., Powers S. K.: Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Rad. Biol. Med., 2010, 49, 1152 - 1160.
  • [75] Sylvestre M., Balcerzak N. D., Feidt C., Baracos V. E., Bellut J. B.: Elevated rate of collagen solubilization and post mortem degradation in muscles of lambs with high growth rates: Possible relationship with activity of matrix metalloproteinases. J. Anim. Sci., 2002, 80, 1871 - 1878.
  • [76] Szabadkai G., Rizzuto R.: Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: More than just neighborhood. FEBS Letters, 2004, 567, 111 - 115.
  • [77] Takahashi K.: Structural weakening of skeletal muscle tissue during post-mortem ageing of meat: The non-enzymatic mechanism of meat tenderization. Meat Sci., 1996, 43 (S), 67 - 80.
  • [78] Taylor R. G., Geesing G. H., Thompson V. F., Koohmaraie M., Goll D. E.: Is Z-disk degradation responsible for post mortem tenderization? J. Anim. Sci., 1995, 73, 1351 - 1367.
  • [79] Tyszkiewicz I.: Mechanizm nieproteolitycznego kruszenia mięsa wołowego. Rocz. Inst. Przem. Mięs. Tł., 1969, 6, 75 - 93.
  • [80] Wu F. Y., Smith S. B.: The role of ionic strength in the post mortem tenderization of meat. Proc. 38th Ann. Recip. Meat Conf., 1985, 209.
  • [81] Wu F. Y., Smith S. B.: Ionic strength and myofibrillar protein solubilization. J. Anim. Sci., 1987, 65, 597 - 608.
  • [82] Zamora F., Aubry L., Sayd T., Lepetit J., Lebert A., Sentandreu M. A., Ouali A.: Serine peptidase inhibitors, the best predictor of beef ageing amongst a large set of quantitative variables. Meat Sci., 2005, 71, 730 - 742.
  • [83] Zamora F., Debiton E., Lepetit J., Lebert A., Dransfield E., Ouali A.: Predicting variability of ageing and toughness in beef M. Longissimus lumborum et thoracis. Meat Sci., 1996, 43, 321 - 333.
  • [84] Zapata I., Zerby H. N., Wick M.: Functional proteomic analysis predicts beef tenderness and the tenderness differential. J. Agric. Food Chem., 2009, 57, 4956 - 4963.
  • [85] Zhao Y .M., Basu U., Dodson M. V., Basarb J. A., Guan Le L.: Proteome differences associated with fat accumulation in bovine subcutaneous adipose tissues. Proteome Sci., 2010, 8, 14.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6a24591d-4757-48db-a7c1-31e17b60a1bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.