PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

An assessment of the influence of co-inoculation with endophytic bacteria and Rhizobia, and the influence of PRP SOL and PRP EBV fertilisers on the microbial parameters of soil and nitrogenase activity in yellow lupine (Lupinus luteus L.) cultivation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to determine the influence of PRP SOL and PRP EBV fertilisers and co-inoculation (simultaneous inoculation of plants with bacteria of the Rhizobium genus and endophytic Bacillus subtilis bacteria) on nitrogenase activity, the dynamics of growth of selected soil microorganisms, variation in soil biochemical properties, and soil fertility index in a yellow lupine plantation. There were 12 variants of the field experiment: 1) the control variant of uninoculated yellow lupine, 2) seeds inoculated with the Bacillus subtilis strain, 3) seeds inoculated with nitragin, 4) PRP SOL fertiliser, 5) PRP EBV fertiliser, 6) PRP SOL + PRP EBV, 7) PRP SOL fertiliser + Bacillus subtilis inoculation, 8) PRP SOL fertiliser + nitragin, 9) PRP SOL fertiliser + Bacillus subtilis + nitragin, 10) PRP EBV fertiliser + Bacillus subtilis, 11) PRP EBV fertiliser + Bacillus subtilis + nitragin, and 12) PRP SOL + PRP EBV + Bacillus subtilis + nitragin. Soil samples for microbiological and biochemical analyses were collected at 3 terms: during the emergence of plants, at the beginning of their florescence, and after harvesting. The count of selected groups of soil microorganisms (total bacterial count, moulds, Actinobacteria, copiotrophic and oligotrophic microorganisms) was measured with the serial dilution method developed by Koch. The analysis of soil enzymatic activity such as dehydrogenases and phosphatases in different variants was based on the colorimetric method, and catalase activity was measured with the manometric method. The two-year field experiment was conducted in 2014 and 2015. It showed that PRP SOL and PRP EBV fertilisers and co-inoculation applied to the yellow lupine plantation stimulated nitrogenase activity, the dynamics of growth of selected groups of soil microorganisms, variation in biochemical activity, and soil fertility index.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2687-2702,fig.,ref.

Twórcy

  • Department of General and Environmental Microbiology, University of Life Sciences, Poznan, Poland
autor
  • Department of Agronomy, University of Life Sciences, Poznan, Poland
  • Department of General and Environmental Microbiology, University of Life Sciences, Poznan, Poland
autor
  • Department of Agronomy, University of Life Sciences, Poznan, Poland
  • Department of General and Environmental Microbiology, University of Life Sciences, Poznan, Poland
  • Department of General and Environmental Microbiology, University of Life Sciences, Poznan, Poland
autor
  • Department of Mathematical and Statistical Methods, University of Life Sciences, Poznan, Poland

Bibliografia

  • 1. NIEWIADOMSKA A. Assessment of the impact of PRP SOL fertiliser and co-inoculation on the process diazotrophy, biological and chemical properties of soil and the crop condition under clover and alfalfa cultivation. Nr 462. Poznań. Publisher. UP in Poznań. ISBN 978-83-7160- 710-3, 106, 2013.
  • 2. OWEN D., WILLIAMS A.P., GRIFFITH G.W., WITHERS P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 86, 41, 2015.
  • 3. SANTOYO G., OROZCO-MOSQUEDA M.C., GOVINDAPPA M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Bio-control Science and Technology. 22 (8), 855, 2012.
  • 4. GLICK B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169 (1), 30, 2014.
  • 5. JANKIEWICZ U. Bioactive metabolites of rhizosphere Pseudomonas bacteria. Water-Environment-Country Areas. T.10, 2 (30), 83, 2010 [In Polish].
  • 6. WARACZEWSKA Z., NIEWIADOMSKA A., KOSICKA-DZIECHCIAREK D. The use of synergistic microorganisms in the process of nitrogen biological fixation. Woda-Środowisko-Obszary Wiejskie. 17 (2), 157, 2017 [In Polish].
  • 7. BOROWIAK K., NIEWIADOMSKA A., SULEWSKA H., SZYMAŃSKA G., GŁUCHOWSKA K., WOLNA-MARUWKA A. Effect of PRP SOL and PRP EBV nutrition on yield, photosynthesis and soil microbial activity of three cereal species. Feb-Fresenius Environ. Bull. 25, 2026, 2016.
  • 8. TAIRO E.V., NDAKIDEMI P.A. Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am. J. Res. Commun. 1 (12), 532, 2013.
  • 9. IUSS Working Group WRB. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No.103. FAO, Rome. 2007.
  • 10. STACHOWSKI P. Evaluation of meteorological droughts in post-mining areas in Poland in Konin area. Central-Pomeranian Scientific Society for Environmental Protection. Annual Set the Environ. Protect. 12, 587, 2010.
  • 11. SAWICKA A. The ecological aspects of dinitrogen fixation. Roczniki Akademii Rolniczej w Poznaniu.. Rozprawy Naukowe. 134, 1983 [In Polish].
  • 12. KUNICKI-GOLDFINGER W.J.H.: Life of bacteria. PWN Warsaw, 616, 2001 [In Polish].
  • 13. MARTIN J.P. Use of acid, rose Bengal and streptomycyn in the plate metod for estimating soil fungi. Soil Sci. 15, 215, 1950.
  • 14. OHTA A., HATTORI H. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26, 99, 1980.
  • 15. GRABIŃSKA-ŁONIEWSKA. A. Laboratory exercises with general microbiology. Publishing House of Warsaw University of Technology. 1999.
  • 16. THALMANN A. On the methodology of determination of dehydrogenase activity in soil using triphenyltetrazolium chloride (TTC). Landwirtsch. Forsh. 21, 3, 1968.
  • 17. TABATABEI M.A., BREMNER J. Use of P-nitrophenyl phosphate for assys of soil phosphatase activity. Soil Biol. Biochem. 1, 301, 1969.
  • 18. JOHNSON J.I., TEMPLE K.L. Some variables affecting the measurements of catalase activity in soil Soil Sci. Soc. Am. Proc. 28, 207, 1964.
  • 19. SAVIOZZI A., CARDELLI R., LEVI-MINZI R., RIFFALDI R. Evolution of biochemical parameters during composting of urban wastes. Comp. Sci. & Utiliz. 12 (2), 153, 2004.
  • 20. ABREU I., REGUERA M., BONILLA A., BOLAŇOS L., BONILLA I. Mineral Nutrition in the Legume-Rhizobia Nitrogen Fixing Symbiosis. Beneficial Plant-microbial Interactions: Ecol. Appl. 122, 2016.
  • 21. SINGH J.S. Plant growth promoting rhizobacteria. Resonance. 18 (3), 275, 2013.
  • 22. AHEMAD M., ZAIDI A., KHAN S., OVES M. Factors affecting the variation of microbial communities in different agro ecosystems. In: Microbial Strategies for crop improvement. Springer, Berlin Heidelberg. 301, 2009.
  • 23. SWĘDRZYŃSKA D., SWĘDRZYŃSKI A., NIEWIADOMSKA A., STARZYK J. Efficiency of simultaneous inoculation of Italian ryegrass (Lolium multiflorum L.) seedlings with bacterial strains of Azospirillum and Rhizobium genera. Fragm. Agron. 30 (3), 172, 2013 [In Polish].
  • 24. NIEWIADOMSKA A., SWĘDRZYŃSKA D. Effect of the Co-Inoculation of Lucerne (Medicago sativa L.) with Sinorhizobium meliloti and Herbaspirillum Frisingense in Relation to the Interactions Between Bacterial Strain, Archiv. Environ Protec. 37 (4), 25, 2011.
  • 25. IQBAL M.I., KHALID M., SHAHZAD S.M., AHMAD M., SOLEMAN N., AKHTAR N. Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of Lentil (Lens culinaris Medik.) Chilean J. Agric. Res. 72 (1), 104, 2012.
  • 26. LOPES A.R., BELLO D., PRIETO-FERNÁNDEZ Á., TRASAR-CEPEDA C., MANAIA C.M., NUNES O.C. Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system. Environ. Sci. Pollu. Res. 22 (15), 11690, 2015.
  • 27. BIELIŃSKA E.J., MOCEK-PŁÓCINIAK A. Phosphatases in the soil environment. UP Pub. in Poznan, ISBN 978-83-7160-554-3, 2009.
  • 28. LAISHRAM J., SAXENA K.G., MAIKHURI R.K., RAO K.S. Soil quality and soil health: A review. Int. J Ecol. Environ. Sci.. 38 (1), 19, 2012.
  • 29. NAPORA A., GROBELAK A. Effect of sewage sludge on microbiological and biochemical activity of soil. Engin. and Environ. Prot. 17 (4), 619, 2014 [In Polish].
  • 30. WOLIŃSKA A., STĘPNIEWSKA Z. Dehydrogenase activity in the soil environment. In: Dehydrogenases. InTech. 354, 2012.
  • 31. BIELIŃSKA E.J., MOCEK-PŁÓCINIAK A. Impact of the tillage system on the soil enzymatic activity. Archiv. Environ. Prot. 38 (1), 75, 2012.
  • 32. NIEWIADOMSKA A., GŁUCHOWSKA K., SWĘDRZYŃSKA D. Influence of PRP fertilization on microbial activity of soil under selected agricultural crops. Materials of the 44th National Conference on Science and Teaching “ “Microorganisms in the protection of the soil environment” Poznań – Rydzyna. 70, 2010.
  • 33. SRINIVASAN R., RAO K.J., REZA S.K., PADUA S., DINESH D., DHARUMARAJAN S. Influence of inorganic fertilizers and organic amendments on plant nutrients and soil enzyme activities under incubation. Inter. J Bio-Resource & Stress Manag. 7 (4), 924, 2016.
  • 34. SWĘDRZYŃSKA D., ZIELEWICZ W., PRZYBYŁ P., STARZYK J. Effect of bio soil conditioner on microbial state and enzymatic activity of soil under Lolium perenne cultivation. Łąkarstwo w Polsce (Grassland Science in Poland). 16, 111, 2013.
  • 35. KUMAR N., MISRA R., SHANKHDHAR S.C., SHANKDHAR D. Effect of foliar application of boron on growth, yiels, chlorophyll, amylose and nitrate reductase activity in rice. ORYZA-An International Journal on Rice. 52 (2), 123, 2015.
  • 36. TARAN N.Y., GONCHAR O.M., LOPATKO K.G., BATSMANOVA L.M., PATYKA M.V., VOLKOGON M.V. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res. Lett. 9 (1), 289, 2014.
  • 37. NAHAS E. Control of acid phosphatases expression from Aspergillus niger by soil characteristics. Braz. Arch. Biol. Tech.. 58 (5), 658, 2015.
  • 38. LEMANOWICZ J., KOPER J. Changes in the content of available phosphorus and soil phosphatase activity as a result of fertilization. Soil Science Annual. LXI (4), 140, 2010 [In Polish].
  • 39. ROTARU V. Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and rhizobacteria application under low water supply. Scientific Papers-Series A, Agronomy. 58, 295, 2015.
  • 40. EREL R., BÉRARD A., CAPOWIEZ L., DOUSSAN C., ARNAL D., SOUCHE G., GAVALAND A., FRITZ C., VISSER E.J.W., SALVI S., LE MARIÉ C., HUND A., HINSINGER P. Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant Soil. 412 (1-2), 115, 2017.
  • 41. SWĘDRZYŃSKA D., MAŁECKA-JANKOWIAK I. The Impact of Tillaging Spring Barley on Selected Chemical, Microbiological, and Enzymatic Soil Properties. Pol. J. Environ. Stud. 26 (1), 303, 2017.
  • 42. ROMANOWICZ A., KRZEPIŁKO A. Volumetric determination of catalase activity in various organs of the primocane-fruiting polana variety of raspberry Rubus idaeus L. and in soil it is grown on. Pol. J. Agron. 15, 49, 2013.
  • 43. MBUTHIA L.W., ACOSTA-MARTÍNEZ V., DEBRUYN J., SCHAEFFER S., TYLER D., ODOI E., MPHESHEA M., WALKER F., EASH N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Bioch. 89, 24, 2015.
  • 44. NIEWIADOMSKA A., KLAMA J., WOLNA-MARUWKA A., SULEWSKA H. Effect of manure application on the development dynamics of proteolytic and ammonification bacteria under maize (Zea mays L.) cropping. Acta Sci. Polon., Agric. 9 (1), 11, 2010.
  • 45. ALLEN J.L., TEN-HAGE L., LEFLAIVE J. Allelopathic interactions involving benthic phototrophic microorganisms. Env. Microbiol. Rep. 8 (5), 752, 2016.
  • 46. SWĘDRZYŃSKA D., ZIELEWICZ W., SWĘDRZYŃSKI A., STARZYK J., WOLNA-MARUWKA A. Influence of the Soleflor Soil Bioconditioner on the Microbiological State of Soil and the Vigour and Yield of Orchard Grass (Dactylis glomerata L.) Rocznik Ochrona Środowiska. 17 (2), 1320, 2015.
  • 47. DĄBROWSKA G., ZDZIECHOWSKA E. The role of rhizobacteria in the stimulation of the growth and development processes and protection of plants against environmental factors. Progr. Plant Prot. 55, 498, 2015.
  • 48. KLAMA J., NIEWIADOMSKA A., WOLNA-MARUWKA A. Koinkulacja in vitro siewek kukurydzy bakteriami diazotroficznymi. Co-inoculation in vitro of maize seedlings with diazotrophic bacteria. Woda - Środowisko - Obszary Wiejskie. 10, 103, 2010 [In Polish].
  • 49. PANDEY R.R., SHARMA G., SINGH T.B., TRIPATHI S.K. Factor influencing soil CO₂ efflux in northeastern Indian oak forest and plantation. Afr. J Plant Sci. 4 (8), 280, 2010.
  • 50. PIETRASZEK P., WALCZAK P. Characteristics and application of Bacillus strains isolated from soil. Pol. J Agron. 16, 37, 2014.
  • 51. SADOWSKA K., PUKACKA A., RATAJ-GURANOWSKA M. The activity of Bacillus subtilis and Pseudomonas fluorescens in vitro in inhibiting pathogenic fungal in legume plant. Progress in Plant Prot. 1 (51), 2011.
  • 52. DIGUŢĂ C.F., MATEI F., CORNEA, C.P. Biocontrol perspectives of Aspergillus carbonarius, Botrytis cinerea and Pencillium expansum on grapes using epiphytic bacteria isolated from Romanian vineyards. Rom. Biotech. Lett. 21 (1), 11126, 2016.
  • 53. SHAIKH S.S., SAYYED R.Z. Role of plant growthpromoting rhizobacteria and their formulation in biocontrol of plant diseases. In Plant microbes symbiosis: applied facets. Springer India. 337, 2015.
  • 54. UTKHEDE R.S., SMITH E.M. Impact of chemical, biological and cultural treatments on the growth and yield of apple in replant-disease soil. Austral. Plant Path. 29 (2), 129, 2000.
  • 55. MARTINEZ-VIVEROS O., JORQUERA M.A., CROWLEY D.E., GAJARDO G., MORA M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Plant Nut. Soil Sc. 10 (3), 293, 2010.
  • 56. SWĘDRZYŃSKA D., GRZEŚ S. Microbiological Parameters of Soil under Sugar Beet as a Response to the Long-Term Application of Different Tillage Systems. Pol. J Environ. Stud. 24 (1), 285, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6a058890-006d-4288-910e-f7b6db51f18c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.