PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 76 |

Tytuł artykułu

Cyanobacteria and glutathione applications improve productivity, nutrient contents, and antioxidant systems of salt-stressed soybean plant

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salt stress restricts plant performance by disrupting various physio-biochemical processes like photosynthesis. Plants growing in saline substrates show deficiencies in absorption of some essential elements due to the presence of excessive sodium (Na⁺) in the rhizosphere, which antagonizes beneficial cations and causing toxicity in metabolism. Cyanobacteria (CB; a natural biofertilizer) play a fundamental role in building-up soil fertility, thus increasing plant performance. Glutathione (GSH) is a well-known antioxidant, which contributes to increase salt tolerance in the plant. This work was conducted as a pot experiment (sand culture) in 2017 to study the combined effect of CB, applied as seed inoculation, and GSH, applied as foliar spray, on growth, pods and seed yields, the contents of antioxidants, osmoprotectants, and nutrients, and the antioxidative enzymes activities of soybean (Glycine max L., cv. Giza 111) plants grown under saline conditions. At fourth leaf stage (21 days after sowing; DAS), CB-pretreated seedlings were supplemented with NaCl (150 mM) along with Hoagland′s nutrient solution, and at the same time seedlings were sprayed with 1 mM GSH. Samples were taken at 60 DAS to assess morphological, physio-biochemical and antioxidant defense systems attributes. Results showed that the integrative application of CB and GSH under saline conditions was effective in improving significantly the growth characteristics, yield components, photosynthetic efficiency (pigments contents and chlorophyll fluorescence), membrane stability index, relative water content, contents of soluble sugars, free proline, ascorbic acid, glutathione, α-tocopherol, and protein, and activities of superoxide dismutase, catalase, and guaiacol peroxidase. The contents of macronutrients (N, P, K⁺, and Ca²⁺) were also increased significantly in Glycine max plants compared to the stressed control. In contrast, Na⁺ content and electrolyte leakage were significantly reduced. Our results recommend using the combined CB (as seed inoculation) and GSH (as foliar spray) application for soybean plants to grow well under saline conditions.

Wydawca

-

Rocznik

Tom

76

Opis fizyczny

p.72-85,ref.

Twórcy

autor
  • Department of Water Relations and Field Irrigation, Agricultural and Biological Research Division, National Research Centre, 33 El Behouth St., (Former El Tahrir St.) 12622 Dokki, Giza, Egypt
autor
  • Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
autor
  • Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt

Bibliografia

  • [1] F. A. Kummerow, M. M. Mahfouz, Q. Zhou, Trans fatty acids in partially hydrogenated soybean oil inhibit prostacyclin release by endothelial cells in presence of high level of linoleic acid, Prostaglandins & other Lipid Mediators, 84 (3-4) (2007) 138–153.
  • [2] S. Perveen, M. Shahbaz, M. Ashraf, Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol, Pak. J. Bot. 43(2011) 2463-2468.
  • [3] M. Shahbaz, M. Ashraf, F. Al-Qurainy, P. J. C. Harris, Salt tolerance in selected vegetables crops, Crit Rev. Plant Sci. 31(2012) 303-320.
  • [4] Z. Noreen, M. Ashraf, Assessment of variation in antioxidative defense system in salt treated pea (Pisum sativum L ) cultivars and its putative use as salinity toterance markers, J. Plant Physiol, 166 (2009) 1764 – 1774.
  • [5] Z. Noreen, M. Ashraf, N. A. Akram, Salt-induced modulation in some key physiobiochemical processes and their use as selection criteria in potential vegetable crop pea (Pisum sativum L.), Crop Pasture Sci., 61(2010) 369 378.
  • [6] M. M. Rady, G. F. Mohamed, Modulation of salt stress effects on the growth, physiochemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Scientia Horticulturae, 193 (2015)105–113.
  • [7] M. M. Rady, E. M. Desoky, A. S Elrys, M. S. Boghdady, Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 121(2019a) 294–305.
  • [8] M. M. Rady, A. S. Elrys, M. F. Abo El-Maati, E. M. Desoky, Role of silicon and proline and their interplay in favor of increasing tolerance in Phaseolus vulgaris plants exposed to salt and cadmium toxicity, Ecotoxicol. Environ. Saf. (In Press), (2019b).
  • [9] M. M. Rady, A. Kuşvuran, A. H. F. lharby, Y. Alzahrani, S. Kuşvuran, Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. Journal of Plant Growth Regulation, OnLine First, https://doi.org/10.1007/s00344-018-9860-5, (2019c).
  • [10] M. Ashraf, M. Afzal, R. Ahmed, F. Mujeeb, A. Sarwar, L. Ali, Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.), Plant Soil. 326 (1–2) (2010) l, 381–391.
  • [11] A. Saleem, M. Ashraf, N. A. Akram, Salt (NaCl)- induced modulation in some key physiobiochemical attributes in okra (Abelmoschus esculentus L.), J Agron Crop Sci. 197(2011) 202-213.
  • [12] S.Safi-naz, M.M.Rady, (2015) Moringa oleifera leaf extract improves growth, physio-chemical attributes, antioxidant defence system and yields of salt-stressed Phaseolus vulgaris L. plants, Int J. ChemTech Res 8(11) (2015)120-134.
  • [13] N. A. Akram, M. Ashraf, F. Al-Qurainy, Aminolevulinic acid-induced changes in yield and seed-oil characteristics of sunflower (Helianthus annuus L.) plants under salt stress, Pak J Bot. 43 (2011) 2845-2852.
  • [14] M. M Rady, B. Varma, S. M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci Hortic 162 (2013) 63-70.
  • [15] M. Ashraf, Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnol Adv., 27(2009): 84 – 93.
  • [16] M. A Khan, Experimental assessment of salinity tolerance of Ceriops tagal seedling and sampling from the Indus delta, Pakistan Aquat. Bot., 70 (2001) 259-268.
  • [17] H. Abbaspour, Effect of salt stress on lipid peroxidation, antioxidative enzymes and proline accumulation in pistachio plants, J. Med Plants Res., 6 (2012) 526-539.
  • [18] J. Cuartero, M. C. Bolarin, M. J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot., 57 (5) (2006) 1045-1058.
  • [19] T. Song, L. Martensson, T. Eriksson, W. Zheng, U. Rasmussen, Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian., China. The Federation of European Materials Societies Microbiology Ecology, 54 (2005) 131-140.
  • [20] M.M. Rady, S.S Taha, S. Kusvuran, Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions, Sci. Hortic. 233(2018) 61-69.
  • [21] P. A. Rogar, P. A. Reynaud, Free-living Blue-green Algae in Tropical Soils, Martinus Nijh off publisher, La Hague, (1982).
  • [22] Saadatnia, Riahi, Cyanobacteria in pollution control, Journal of science Industrial research, 55 (2009) 685-692.
  • [23] R. Edwards, D. P. Dixon, V. Walbot, Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health, Trends Plant Sci., 5 (2000)193–198.
  • [24] A. Pompella, A. Visvikis, A. Paolicchi, V. Tata, A. F. Casini, The changing faces of glutathione, a cellular protagonist, Bioch. Pharm. 66 (8) (2003) 1499–503.
  • [25] K. Asada, M. Takahashi, Production and scavenging of active oxygen in photosynthesis, In Photoinhibition. Edited by Kyle, D.J., Osmond, C.B. and Arntzen, C.J. Elsevier, Amsterdam, (1987) 227–287.
  • [26] G. Noctor, C. H. Foyer, Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49 (1998) 249–279.
  • [27] D. Hoagland, D. I. Arnon, The water culture method for growing plants without soil. California Agricultural Experiment Station Bulletin. 347 (1983)1-39.
  • [28] D.I Arnon, Copper enzymes in isolated chloroplast Polyphenol-oxidase in Beta vulgaris L. Plant Physiol. 24 (1949)1–15.
  • [29] K. Maxwell G. N.Johnson, Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345) (2000) 659-668.
  • [30] A. J. Clark, W. Landolt, J. B. Bucher, R. J. Strasser, Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index, Environmental Pollution, 109 (2000) 501–507.
  • [31] L. S Bates, R. P. Waldeen, I. D. Teare, Rapid determination of free proline for water stress studies, Plant Soil, 39 (1973) 205–207.
  • [32] J. J. Irigoyen, D. W. Emerich, M. Sanchez-Diaz, Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants, Physiol. Plant, 8 (1992) 455–460.
  • [33] M. M. Rady, Effect of 24-epibrassinolide on growth yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress, Sci. Hortic, 129 (2011) 232–237.
  • [34] A. Sh. Osman, M. M. Rady, Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. J. Hortic. Sci. Biotechnol, 89 (2014) 237-244.
  • [35] K. Kampfenkel, M. Van Montagu, D. Inze, Extraction and determination of ascorbate and dehydroascorbate from plant tissue, Anal. Biochem., 225 (1995) 165–167.
  • [36] L. J. De Kok, F. M. Maas, J. Godeke, A. B. Haaksma, P. J. C. Kuiper, Glutathione, a tripeptide which may function as a temporary storage compound of excessive reduced sulphur in H2S fumigated spinach plants, Plant Soil, 91(1986) 349–352.
  • [37] E. J. M. Konings, H. H. S. Roomans, P. R. Beljaars, Liquid chromatographic determination of tocopherols and tocotrienols in margarine, infant foods, and vegetables, Journal of AOAC International, 79 (1996) 902–906.
  • [38] L. S. Ching, and S. Mohamed, Alpha-tocopherol content in 62 edible tropical pants, Journal of Agricultural and Food Chemistry, 49 (2001) 3101–3105.
  • [39] O. H. Lowry, N. J. Rosebrough, A. L. Farr, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193(1) (1951) 265–275.
  • [40] Y. Kono, Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase, Arch. Biochem. Biophys, 186 (1) (1978) 189–195.
  • [41] H. Aebi, Catalase in vitro, Methods Enzymol, 105 (1984) 121–126.
  • [42] J. Putter, Peroxidase. In: Bergmeyer, H.U.(Ed.), Methods of Enzymatic Analysis, Verlag Chemie, Weinhan, (1974) 685–690.
  • [43] W. C. Snedecor, W. G. Cochran, Statistical Methods, 7th ed. The Iowa State Univ. Press, Ames, Iowa, USA, Some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.) Environ Exp. Bot. 67 (1980) 395 – 402.
  • [44] S. E. Khalil, A.S.A El-Noemani, Effect of bio-fertilizers on growth, yield, water relations, photosynthetic pigments and carbohydrates contents of Origanum vulgare L. plants grown under water stress conditions, Amer. J. Sustain. Agric., 9 (2015) 60–73.
  • [45] K. M Tawfik, Evaluating the use of rhizobacterin on cowpea plants grown under salt stress, Res. J. Agric. Biol. Sci. 4(1) (2008) 26–33.
  • [46] M. M Slabbert, G. H. J Krüger, Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves, S. Afr. J. Bot. 95 (2014) 123–128.
  • [47] N. Wutipraditkul, P. Wongwean, T. Buaboocha, Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine, Biol. Plant., 59 (3) (2015) 547–553.
  • [48] M. M. Rady, Kh. A Hemida, Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings, Ecotoxic. Environ. Saf., 133 (2016) 252–259.
  • [49] M. M. Rady, R.S. Taha, A.H.A. Mahdi, Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress, S. Afr. J. Bot., 102 (2016) 221–227.
  • [50] M. T. Abdelhamid, M. M. Rady, A. Sh. Osman, M. A Abdalla, Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. Plants, J. Hortic. Sci. Biotechnol., 88 (2013) 439 – 446.
  • [51] V. Ordog, Beneficial effects of microalgae and cyanobacteria in plant/soil-systems, with special regard to their auxin-and cytokinin-like activity, In: International workshop and training course in microalgal biology and biotechnology, Mosonmagyarovar, (1999) 13–26.
  • [52] P. Sudhir, S. D. S. Murthy, Effects of salt stress on basic processes of photosynthesis, Photosynthetica, 42 (2) (2004), 481–486.
  • [53] M. A. Gururani, C. P. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju, S.W. Park, Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance, J. Plant Growth Regul., 32 (2) (2013) 245–258.
  • [54] H. Greenway, R. Munns, Mechanisms of salt tolerance in nonhalophytes, Ann. Rev. Plant Physiol., 31(1) (1980) 149–190.
  • [55] J. K. Zhu, Plant salt tolerance, Trends Plant Sci., 6 (2001) 66–71.
  • [56] N. Chaparzadeh, M. L. D'Amico, R. A. Khavari-Nejad, R. Izzo, F. Navari-Izzo, Antioxidative responses of Calendula officinalis under salinity conditions, Plant Physiol. Biochem., 42 (9) (2004), 695–701.
  • [57] M. P. J. C. Ashraf, P. J. C Harris, Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 166 (1) (2004) 3–16.
  • [58] N. Karthikeyan, R. Prasanna, A. Sood, P. Jaiswal, S. Nayak, B. D. Kaushik, Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol., 54 (2009) 43–51.
  • [59] V. Mittova, M. Tal, M. Volokita, M. Guy, Salt stress induces up‐regulation of an efficient chloroplast antioxidant system in the salt‐tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species, Physiol. Plant, 115(3) (2002) 393–400.
  • [60] M. L. Dionisio-Sese, S. Tobita, Antioxidant responses of rice seedlings to salinity stress, Plant Sci. 135 (1) (1998) 1–9.
  • [61] S. C. Singh, R. P. Sinha, D. P Hader, Role of lipids and fatty acids in stress tolerance in cyanobacteria, Acta protozoologica, 41(4) (2002) 297–308.
  • [62] N. K. Singh, D.W. Dhar, Cyanobacterial reclamation of salt-affected soil, In: Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, (2010) 243–275. Springer Netherlands.
  • [63] V. Ivanova, A.Vassilev, Biometric and physiological characteristics of chrysanthemum (Chrysanthemum indicum L.) plants grown at different rates of nitrogen fertilization, J. Central Eur. Agric., 4 (1) (2003) 1–6.
  • [64] R. Sharma, M. K. Khokhar, R. L. Jat, S. K. Khandelwal, Role of algae and cyanobacteria in sustainable agriculture system, Wudpecker J. Agric. Res., 1(9) (2012) 381–388.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-69f91213-d93b-46e9-8247-22f90066dd40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.