PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 70 |

Tytuł artykułu

Climatic response of Betula ermanii along an altitudinal gradient in the northern slope of Changbai Mountain, China

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The sensitivity of Betula ermanii tree-ring growth to climate variation over an altitudinal gradient was assessed. Betula ermanii forest grows in the northern slope of Changbai Mountain from approximately 1,700mabove sea level (a.s.l.), andforms the upper tree line at nearly 2,100ma.s.l.. Six study sites were constructed along the altitudinal gradient (1,670 to 2,010 m a.s.l.) and ring-width chronologies of Betula ermanii were built. The mean tree-ring series intercorrelation (RBAR) increasedwith elevation. In principal component analysis, the first unrotatedprinciple component explained77.1% of the total variance, indicating the tree-ring growth of Beutla ermanii over the altitudinal gradient was governed by regional climate. Correlation function analysis revealedthat the radial growth of Betula ermanii was significantly similar in response to climatic conditions. Overall, the low temperatures during previous June, July and during the dormant period (previous October to current May) andthe high temperatures during current June, July andAugust would benefit the radial growth of Betula ermanii. Abundant precipitation during growing season (previous June, July, September andcurrent August), previous November andcurrent May, wouldalso facilitate the tree-ring growth. The reason for this uniform growth behavior in Betula ermanii remainedunclear. Betula ermanii in Changbai Mountain formedrelatively pure stands with an open canopy, which might be partly contributing to the common growth response to climatic signals along the altitudinal gradient, but further work was required for testing this assumption.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Opis fizyczny

p.99-107,fig.,ref.

Twórcy

autor
  • Key Laboratory for Silviculture andConservation of Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • Key Laboratory for Silviculture andConservation of Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • Key Laboratory for Silviculture andConservation of Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China

Bibliografia

  • Barber V.A., Juday G.P., Finney B.P., Wilmking M. 2004. Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: evidence for changing synoptic climate regimes. Climatic Change 63: 91–120.
  • Biondi F., Qeadan F. 2008. Inequality in paleorecords. Ecology 89: 1056–1067.
  • Biondi F., Waikul K. 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30: 303–311.
  • Bunn A.G., Korpela M., Biondi F., Campelo F., Merian, P., Qeadan, F., Zang, C. 2012. dplR: Dendrochronology Program Library in R, in: R package version 1.5.4, available at: http://CRAN.R-project.org/package=dplR (last access: 3 April 2013).
  • Carrer M., Nola P., Motta R., Urbinati C. 2010. Contrasting tree-ring growth to climate responses of Abies alba towardthe southern limit of its distribution area. Oikos 119: 1515–1525.
  • Carrer M., Anfodillo T., Urbinati C., Carraro V. 1998. High-altitude forest sensitivity to global warming: results from long-term andshort-term analyses in the eastern italian alps. In: The Impacts of Climate Variability on Forests. Beniston M., Innes J. (Eds.). Springer Berlin, Heidelberg, pp. 171–189.
  • Cedro A. 2007. Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q.robur ) and sessile oak (Q.petraea ) in the Bielinek Nature Reserve: Comparison of the climatic determinants of tree-ring width. Geochronometra 26: 39–45.
  • Chen L., Wu S., Pan T. 2011. Variability of climate- growth relationships along an elevation gradient in the Changbai Mountain, northeastern China. Trees 25: 1133–1139.
  • Cook E.R. 1985. A Time Series Analysis Approach to Tree Ring Standardization. Doctoral Dissertation. University of Arizona, Tucson.
  • Cook E.R., Kairiukstis L.A. 1990. Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp. 137–148.
  • Cullen L.E., Palmer J.G., Duncan R.P., Stewart G.H. 2001. Climate change andtree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research 31: 1981–1991.
  • DeLucia E.H., Smith W.K. 1987. Air andsoil temperature limitations on photosynthesis in Engelmann spruce during summer. Canadian Journal of Forest Research 17: 527–533.
  • Di Filippo A., Biondi F., Cufar K., De Luis M., Grabner M., Maugeri M., Presutti Saba E., Schirone B., Piovesan G. 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 34: 1873–1892.
  • Efron B., Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54–57.
  • Esper J., Frank D., Wilson R., Büntgen U., Treydte K. 2007. Uniform growth trends among central Asian low- andhigh-elevation juniper tree sites. Trees – Structure and Function 21: 141–150.
  • Fritts H.C., Smith D.G., Cardis J.W., Budelsky C.A. 1965. Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46: 394–401.
  • Fritts H.C. 1976. Tree rings andclimate. Academic Press, New York.
  • Gostev M., Wiles G., D’arrigo R., Jacoby G., Khomentovsky P. 1996. Early summer temperatures since 1670 A.D. for Central Kamchatka reconstructed basedon a Siberian larch tree-ring width chronology. Canadian Journal of Forest Research 26: 2048–2052.
  • Gou X., Chen F., Yang M., Li J., Peng J., Jin L. 2005. Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. Journal of Arid Environments 61: 513–524.
  • Guiot J. 1991. The bootstrappedresponse function. Tree-Ring Bulletin 51: 39–41.
  • Holmes R.L. 1983. Computer-assistedquality control in Tree-Ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • Kienast F., Schweingruber F.H., Bräker O.U., Schär E. 1987. Tree-ring studies on conifers along gradients andthe potential of single-year analyses. Canadian Journal of Forest Research 17: 683–696.
  • Koprowski M., Zielski A. 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowlandPoland . Trees – Structure and Function 20: 383–390.
  • Leal S., Melvin T.M., Grabner M., Wimmer R., Briffa K.R. 2007. Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate. Boreas 36: 426–440.
  • Liang E., Wang Y., Xu Y., Liu B., Shao X. 2010. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24: 363–373.
  • Linderholm H.W., Solberg B., Lindholm M. 2003. Tree-ring records from central Fennoscandia: the relationship between tree growth andclimate along a west–east transect. The Holocene 13: 887–895.
  • Liu L.-S., Shao X.-M., Liang E.-Y. 2006. Climate signals from tree ring chronologies of the upper and lower treelines in the Dulan region of the Northeastern Qinghai-Tibetan Plateau. Journal of Integrative Plant Biology 48: 278–285.
  • Martin-Benito D., Cherubini P., Delrio M., Canellas I. 2008. Growth response to climate andd rought in Pinus nigra Arn. trees of different crown classes. Trees 22: 363–373.
  • Mäkinen H., NöjdP., Mielikäinen K. 2000. Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finlandto the Arctic timberline. Canadian Journal of Forest Research 30: 769–777.
  • Mäkinen H., NöjdP., Kahle H.-P., Neumann U., Tveite B., Mielikäinen K., Röhle H., Spiecker H. 2002. Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management 171: 243–259.
  • Mäkinen H., NöjdP., Kahle H.-P., Neumann U., Tveite B., Mielikäinen K., Röhle H., Spiecker H. 2003. Large-scale climatic variability andrad ial increment variation of Picea abies (L.) Karst. in central andnorthern Europe. Trees – Structure and Function 17: 173–184.
  • Miina J. 2000. Dependence of tree-ring, earlywood andlatewoodind ices of Scots pine andNorway spruce on climatic factors in eastern Finland. Ecological Modelling 132: 259–273.
  • Mitchell T., Jones P. 2005. An improvedmethodof constructing a database of monthly climate observations and associatedhigh-resolution grids. International Journal of Climatology. 25: 693–712.
  • Oberhuber W., Kofler W., Pfeifer K., Seeber A., Gruber A., Wieser G. 2008. Long-term changes in tree-ring–climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid–1980s. Trees – Structure and Function 22: 31–40.
  • Olivar J., Boginoc S., Spieckerb H., Bravoa F. 2012. Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30: 35–47.
  • Peng J., Gou X., Chen F., Li J., Liu P., Zhang Y. 2008. Altitudinal variability of climate–tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia 26: 87–96.
  • Peterson D.W., Peterson D.L. 2001. Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82: 3330–3345.
  • Richman M.B. 1986. Rotation of principal components. Journal of Climatology 6: 293–335.
  • RollandC. 1993. Tree-ring andclimate relationships for Abies alba in the internal Alps. Tree-Ring Bull 53: 1–11.
  • Savva Y., Oleksyn J., Reich P.B., Tjoelker M.G., Vaganov E.A., Modrzynski J. 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees – Structure and Function 20: 735–746.
  • Splechtna B.E., Dobrys J., Klinka K. 2000. Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation andclimatic fluctuations. Annals of Forest Science. 57: 89–100.
  • Takahashi K., Azuma H., Yasue K. 2003. Effects of climate on the radial growth of tree species in the upper andlower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan. Ecological Research 18: 549–558.
  • Takahashi K., Tokumitsu Y., Yasue K. 2005. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research 20: 445–451.
  • Takahashi K., Okuhara I., Tokumitsu Y., Yasue K. 2011. Responses to climate by tree-ring widths and maximum latewoodd ensities of two Abies species at upper and lower altitudinal distribution limits in central Japan. Trees 25: 745–753.
  • Tardif J., Camarero J.J., Ribas M., Gutierrez E. 2003. Spatiotemporal variability in tree growth in the Central Pyrenees: Climatic andsite influences. Ecological Monographs 73: 241–257.
  • Wang T., Ren H., Ma K. 2005. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees – Structure andFunction 19: 735–741.
  • Wigley T.M.L., Briffa K.R., Jones P.D. 1984. On the average value of correlatedtime series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.
  • Wilmking M., Juday G.P., Barber V.A., Zald H.S.J. 2004. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10: 1724–1736.
  • Wu D.D., Zhou Y.B., Yu D.P., Dai G.H. 2009. Physiological response of Betula ermanii at different altitudes in Changbai Mountain. Acta Ecologica Sinica 29: 2279–2285 (in Chinese, English summary).
  • Yu D., Wang G.G., Dai L., Wang Q. 2007. Dendroclimatic analysis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain, Northeast China. Forest Ecology and Management 240: 105–113.
  • Yu D.P., Gu H.Y., Wang J.D., Wang Q.L., Dai L.M. 2005. Relationships of climate change andtree ring of Betula ermanii tree line forest in Changbai Mountain. Journal of Forestry Research 16: 187–192.
  • Zhang Q.B., Hebda R.J. 2004. Variation in radial growth patterns of Pseudotsuga menziesiion the central coast of British Columbia, Canada. Canadian Journal of Forest Research 34: 1946–1954.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6968349a-f72f-47db-b654-9c79afbb2bea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.