PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Effect of single nucleotide polymorphisms in the UCP3 and FOXO1 genes on carcass quality traits in Qinchuan cattle

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Allelic and genotypic distributions of polymorphisms in the uncoupling protein 3 (UCP3) and forkhead box O1 (FOXO1) genes were assessed in 491 Chinese Qinchuan cattle. Single-locus genotype effects and the combined effect of polymorphisms within those two genes were probed to determine possible association with the carcass quality traits. Using DNA sequencing, in total three novel single nucleotide polymorphisms (SNPs) were identified, including a SNP in the intron 1 of UCP3 (NC_037339.1: g.6821C>T), and two SNPs within the 3’UTR of FOXO1 (NC_037342.1: g.93063G>A and g.93280A>G). Statistical analyses indicated that the g.6821C>T (UCP3) and g.93280A>G (FOXO1) polymorphisms were significantly associated with intramuscular fat content (P < 0.05 or P < 0.01). So, the results obtained in this study constitute a valuable information about the markers applicable in marker-assisted selection (MAS) used in improving carcass quality traits.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.301-306,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 Qinghai Province, People's Republic of China
autor
  • College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 Qinghai Province, People's Republic of China

Bibliografia

  • An X., Song Y., Hou J., Wang S., Gao K., Cao B., 2016. Identification of a functional SNP in the 3’-UTR of caprine MTHFR gene that is associated with milk protein levels. Anim. Genet. 47, 499–503, https://doi.org/10.1111/age.12425
  • Bartz M., Kociucka B., Mankowska M., Switonski M., Szydlowski M., 2014. Transcript level of the porcine ME1 gene is affected by SNP in its 3’UTR, which is also associated with subcutaneous fat thickness. J. Anim. Breed. Genet. 131, 271–278, https://doi.org/10.1111/jbg.12065
  • Botstein D., White R.L., Skolnick M., Davis R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331
  • Chakrabarti P., Kandror K.V., 2009. FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes. J. Biol. Chem. 284, 13296–13300, https://doi.org/10.1074/jbc.C800241200
  • Changani K.K., Nicholson A., White A., Latcham J.K., Reid D.G., Clapham J.C., 2003. A longitudinal magnetic resonance imaging (MRI) study of differences in abdominal fat distribution between normal mice, and lean overexpressers of mitochondrial uncoupling protein-3 (UCP-3). Diabetes Obes. Metab. 5, 99–105, https://doi.org/10.1046/j.1463-1326.2003.00249.x
  • Chen W., Xu H., Chen X., Liu Z., Zhang W., Xia D., 2016. Functional and activity analysis of cattle UCP3 promoter with MRFs-related factors. Int. J. Mol. Sci. 17, 682, https://doi.org/10.3390/ijms17050682
  • Chung E.-R., Shin S.-C., Heo J.-P., 2011. Association between SNP marker of uncoupling protein 3 gene and meat yield and marbling score traits in Korean cattle. Korean J. Food Sci. Anim. Resour. 31, 530–536, https://doi.org/10.5851/kosfa.2011.31.4.530
  • Costford S.R., Chaudhry S.N., Crawford S.A., SalkhordehM., HarperM.- E., 2008. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3. Am. J. Physiol. Endocrinol. Metab. 295, E1018–E1024, https://doi.org/10.1152/ajpendo.00779.2007
  • Cui H.-X., Liu R.-R., Zhao G.-P., Zheng M.-Q., Chen J.-L., Jie W., 2012. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fastand slow-growing chickens. BMC Genomics 13, 213, https://doi.org/10.1186/1471-2164-13-213
  • Dogan R.I., Getoor L., Wilbur W.J., Mount S.M., 2007. SplicePort – an interactive splice-site analysis tool. Nucleic Acids Res. 35, Suppl. 2, W285–W291, https://doi.org/10.1093/nar/gkm407
  • Erden Y., Tekin S., Kirbag S., Sandal S., 2015. Mitochondrial uncoupling proteins in the brain: Their structure, function and physiological role. Med. Sci. 4, 2289–2307, https://doi.org/10.5455/medscience.2014.03.8216
  • Hausman G.J., Basu U., Du M., Fernyhough-Culver M., Dodson M.V., 2014. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 3, 242–255, https://doi.org/10.4161/adip.28546
  • Hou J., An X., Song Y., Gao T., Lei Y., Cao B., 2015. Two mutations in the caprine MTHFR 3’UTR regulated by microRNAs are associated with milk production traits. PLoS ONE 10, e0133015, https://doi.org/10.1371/journal.pone.0133015
  • Hull J., Campino S., Rowlands K. et al., 2007. Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3, e99, https://doi.org/10.1371/journal.pgen.0030099
  • Kim J.J., Li P., Huntley J., Chang J.P., Arden K.C., Olefsky J.M., 2009. FoxO1 haploinsufficiency protects against high-fat diet-induced insulin resistance with enhanced peroxisome proliferator-activated receptor γ activation in adipose tissue. Diabetes 58, 1275–1282, https://doi.org/10.2337/db08-1001
  • Lettieri Barbato D., Tatulli G., Aquilano K., Ciriolo M.R., 2013. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4, e861, https://doi.org/10.1038/cddis.2013.404
  • Nakae J., Cao Y., Oki M., Orba Y., Sawa H., Kiyonari H., Iskandar K., Suga K., Lombes M., Hayashi Y., 2008. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57, 563–576, https://doi.org/10.2337/db07-0698
  • NRC (National Research Council), 2000. Nutrient Requirements of Beef Cattle. 7th Revised Edition. Update 2000. National Academies Press. Washington, DC (USA), https://doi.org/10.17226/9791
  • Oliveira B.A.P., Pinhel M.A.S., Nicoletti C.F., Oliveira C.C., Quinhoneiro D.C.G., Noronha N.Y., Marchini J.S., Marchry A.J.,
  • Junior W.S., Nonino C.B., 2016. UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation and body composition. PLoS ONE 11, e0150811, https://doi.org/10.1371/journal.pone.0150811
  • Pang Y., Wang J., Zhang C., Lei C., Lan X., Yue W., Gu C., Chen D., Chen H., 2011. The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. 38, 755–759, https://doi.org/10.1007/s11033-010-0163-6
  • Ramayo-Caldas Y., Fortes M.R.S., Hudson N.J. et al., 2014. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. J. Anim. Sci. 92, 2832–2845, https://doi.org/10.2527/jas.2013-7484
  • Saltzman E., Roberts S.B., 1995. The role of energy expenditure in energy regulation: findings from a decade of research. Nutr. Rev. 53, 209–220, https://doi.org/10.1111/j.1753-4887.1995.tb01554.x
  • Seong J., Oh J.D., Cheong I.C., Lee K.W., Lee H.K., Dong S.S., Jeon G.J., Park K.D., Hong S.K., 2011. Association between polymorphisms of Myf5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle). Genes Genom. 33, 425–430, https://doi.org/10.1007/s13258-011-0006-4
  • Sparks J.D., Dong H.H., 2009. FoxO1 and hepatic lipid metabolism. Curr. Opin. Lipidology 20, 217–226, https://doi.org/10.1097/MOL.0b013e32832b3f4c
  • Sprague J.E., Yang X., Sommers J., Gilman T.L., Mills E.M., 2007. Roles of norepinephrine, free fatty acids, thyroid status, and skeletal muscle uncoupling protein 3 expression in sympathomimetic-induced thermogenesis. J. Pharmacol. Exp. Ther. 320, 274–280, https://doi.org/10.1124/jpet.106.107755
  • Sun Y., Xue J., Guo W., Li M., Huang Y., Lan X., Lei C., Zhang C., Chen H., 2013. Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle. J. Genet. 92, Suppl. 2, e8–e14, https://doi.org/10.1007/s12041-013-0209-3
  • Toime L.J., Brand M.D., 2010. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radical Biol. Med. 49, 606–611, https://doi.org/10.1016/j.freeradbiomed.2010.05.010
  • Trott J.F., Freking B.A., Hovey R.C., 2014. Variation in the coding and 3′ untranslated regions of the porcine prolactin receptor short form modifies protein expression and function. Anim. Genet. 45, 74–86, https://doi.org/10.1111/age.12100
  • Wang Y., Yang W., Gui L., Wang H., Zan L., 2016. Association and expression analyses of the Ucp2 and Ucp3 gene polymorphisms with body measurement and meat quality traits in Qinchuan cattle. J. Genet. 95, 939–946, https://doi.org/10.1007/s12041-016-0720-4
  • Yan X., Weijun P., Ning W., Yu W., Wenkai R., Gongshe Y., 2013. Knockdown of both FoxO1 and C/EBPβ promotes adipogenesis in porcine preadipocytes through feedback regulation. Cell Biol. Int. 37, 905–916, https://doi.org/10.1002/cbin.10115
  • Zhang R., Li X., 2011. Association between IGF-IR, m-calpain and UCP-3 gene polymorphisms and growth traits in Nanyang cattle. Mol. Biol. Rep. 38, 2179–2184, https://doi.org/10.1007/s11033-010-0346-1
  • Zou P., Liu L., Zheng L., Liu L., Stoneman R.E., Cho A., Emery A., Gilbert E.R., Cheng Z., 2014. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 13, 3759–3767, https://doi.org/10.4161/15384101.2014.965977

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-69583a15-1b0d-4639-8cdb-ad5f8ba175cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.