PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |

Tytuł artykułu

The effect of direct covering with biodegradable nonwoven film on the physical and chemical properties of soil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is well known that plastic mulch film increases the yield of many vegetables, in particular the early season yield, most likely by increasing soil temperature and moisture, and inhibiting weed growth. Soil surface covering decreases erosion, reduces evaporation, protects against raindrop impact, and increases aggregate stability. The following field experiment was carried out at the experimental farm in Mydlniki in Krakow, Poland in 2008/09 and 2009/10. Winter leek and onion covered by biodegradable nonwoven (Bionnole 100 g·m⁻² and IBWCH 75 g·m⁻²) film were assessed to estimate the changes in several physical and chemical soil properties. The experiment revealed the interaction between treatments and wet-aggregate content in soil. The biofilm covering slightly increased the amount of large aggregates (4.0-2.5 mm) and decreased the percentage of small sized macroaggregates (0.50-0.25 mm). We also observed a trend in the increase of water capacity in soils following treatments. The obtained results suggest that the use of biodegradable film as covering could be an alternative to the traditional plastic films widely used in the world.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

p.667-674,ref.

Twórcy

  • Department of Soil Cultivation and Fertilization of Horticultural Plants,
autor
  • Department of Vegetables and Herb Plants, Agricultural University of Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland

Bibliografia

  • 1. GREEN D.S., KRUGER E.L., STANOSZ G.R. Effects of polyethylene mulch in a short-rotation, poplar plantation vary with weed-control strategies, site quality and clone. Forest Ecol. Manage. 173, 251, 2003.
  • 2. GREER L., DOLE J.M. Aluminum foil, aluminum-painted, plastic and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. HortTech 13, 276, 2003.
  • 3. MORENO M.M., MORENO A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hort. 116, 256, 2008.
  • 4. MORENO M.M., MORENO A., MANCEBO I. Comparison of different mulch materials in a tomato (Solanum lycopersicum L.) crop. Spanish J. Agr. Res. 7, 454, 2009.
  • 5. SIWEK P. Vegetables under plastic and nonwoven coverts. Hortpress. 2010 [In Polish].
  • 6. STEVENS, E.S. What makes green plastics green? Biocycle. 44, (3), 24, 2003.
  • 7. MINUTO G., GUERRINI S., VERSARI M., PISI L., TINIVELLA F., BRUZZONE C., PINI S., CAPURRO M. Use of biodegradodable mulching in vegetable production. IFOAM Oragnic World Congress, Modena Italy, June. 16, 2008.
  • 8. LAMONT, W.J. Plastic mulches for the production of vegetable crops. HortTech 3, 35, 1993.
  • 9. KROCHTA J.M., DE MULDER-JOHNSTON C.L.C. Biodegradable Polymers from Agricultural Products. Agricultural Materials as Renewable Resources. ACS Symposium Series, Vol. 647, Chapter 9, 120, 1996.
  • 10. KOLYBABA M., TABIL L.G., PANIGRAHI S., CRERAR W.J., POWELL T., WANG B. Biodegradable Polymers: Past, Present, and Future. CSAE/ASAE Annual Intersectional Meeting North Dakota, USA October 3-4, 2003.
  • 11. BRONICK C.J., LAL R. Soil structure and management: a review. Geoderma 124, 3, 2005.
  • 12. SIWEK P. Modification of environmental conditions with soil mulching and direct plantcovering in the cultivation of cucumber and celery. Zeszyty Naukowe AR w Krakowie, Rozprawy. 279, 1, 2002 [In Polish].
  • 13. CARAVACA F, LAX A, ALBALADEJO J. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Till. Res. 78, 83, 2004.
  • 14. MUNKHOLM L.J. Soil friability: A review of the concept, assessment and effects of soil properties and management. Geoderma 167, 236, 2011.
  • 15. DÍAZ-ZORITA M., PERFECT E., GROVE J.H. Disruptive methods for assessing soil structure. Soil Till. Res. 64, 3, 2002.
  • 16. LI Z., ZHANG R.H., WANG X.J., WANG J.P., ZHANG C.P., TIAN C.Y. Carbon dioxide fluxes and concentrations in a cotton field in north western China: Effects of plastic mulching and drip irrigation. Pedosphere 21, 178, 2011.
  • 17. KASIRAJAN S., NGOUAJIO M. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev. 32, 501, 2012.
  • 18. MARTIN-CLOSAS L. Biodegradable Mulching in an Organic Tomato Production System, Acta Hort. 767, 267, 2008.
  • 19. LITYŃSKI T., JURKOWSKA H., GROCHALA E. Soil physical and chemical analysis in agricultural. PWN Warszawa. 1976 [In Polish].
  • 20. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. Soil and plant analysis procedures. Warsaw (Poland): Editorial House of the Institute of Environmental Protection. 1991 [In Polish].
  • 21. PN-R-04032. Soils and mineral materials. Soil sampling and granulometric analysis. Polish Committee for Standardization. Warsaw, 1998 [In Polish].
  • 22. YODER R.E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J. Am. Soc. Agron. 28, 337, 1936.
  • 23. NOWOSIELSKI O. The basic of fertilization requirements in horticulture crops. PWRiL Warszawa. 1988. [In Polish].
  • 24. PN-EN ISO 13395:2001. Water quality. –Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric. Warsaw, 2001. Polish Committee for Standardization. 2001 [In Polish].
  • 25. HÅKANSSON I., LIPIEC J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Till. Res. 53, 71, 2000.
  • 26. NDUBUISI M.C. Physical Properties of an Ultisol Under Plastic Film and No-Mulches and their Effect on the Yield of Maize. J. Am. Sci. 5, 25, 2009.
  • 27. NIMMO J.R., PERKINS K.S. Aggregate stability and size distribution. In Dane J.H., Topp G.C. eds. Methods of soil analysis, Part 4. Physical methods. Madison, Wisconsin, Soil Sci. Soc. Am. J., 317, 2002.
  • 28. JASTROW J.D., MILLER R.M., LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30, 905, 1998.
  • 29. SIX J., PAUSTIAN K., ELLIOTT ET, COMBRINK C. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci. Soc. Am. J., 64, 681, 2000.
  • 30. HAM J.M., HUITENBERG G.J., LAMONT W.J. Optical properties of plastic mulches affect the field temperature regime. J. Am. Soc. Hort. Sci. 118, 188, 1993.
  • 31. BOLAN N.S., NAIDU R., SYERS J.K., TILLMAN R.W. Surface charge and solute interactions in soils. Adv. Agron. 67, 87, 1999.
  • 32. BRIEDIS C., SÁ J.C., CAIRES E.F, NAVARRO J, INAGAKI T.M, BOER A., NETO C.Q., FERREIRA A, CANALLI L.B., SANTOS J.B. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma. 170, 80, 2012.
  • 33. ZHANG X.C., NORTON L.D. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260, 194, 2002.
  • 34. ENGELS C., MARSCHNER H. Effect of Suboptimal Root-Zone Temperature and Shoot Demand on Net Translocation of Micronutrients from the Roots to the Shoot of Maize. Plant Soil. 186, 311, 1996.
  • 35. LI F., LIU C., YANG Y., CHEN X., JIANG Q. Effect of plastic mulching on translocation characteristics of copper and zinc in soil and Chinese cabbage (Brassica chinensis) system. J. Ecol. Rural Environ. 25, 54, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-68ffd939-8947-4c69-87e9-f9aba85efac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.