PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Investigating China’s urban air quality using big data, information theory, and machine learning

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
With the development of the economy and industrial construction, air quality deteriorates dramatically in China and seriously threatens people’s health. To investigate which factors most affect air quality and provide a useful tool to assist the prediction and early warning of air pollution in urban areas, we applied a sensor that observed air quality big data, information theory-based predictor significance identification, and PEK-based machine learning to air quality index (AQI) analysis and prediction in this paper. We found that the stability of air quality has a high relationship with absolute air quality, and that improvement of air quality can also improve stability. Air quality in southern and western cities is better than that of northern and eastern cities. AQI time series of cities with closer geophysical locations have a closer relationship with others. PM2.5, PM10, and SO2 are the most important impact factors. The machine learning-based prediction is useful for AQI prediction and early warning. This tool could be applied to other city’s air quality monitoring and early warning to further verify its effectiveness and robustness. Finally, we suggested the use of a training data sample with better quality and representatives to further improve AQI prediction model performance in future research.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.565-578,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, P.R. China
  • State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, P.R. China
autor
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, P.R. China
  • State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, P.R. China
autor
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, P.R. China
autor
  • College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P.R. China
autor
  • State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, P.R. China
  • Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA

Bibliografia

  • 1. Lei T., Pang Z., Wang X., Li L., Fu J., Kan G., Zhang X., Ding L., Li J, Huang S., Shao C. Drought and carbon cycling of grassland ecosystems under global change: a review. Water, 8, 460, doi: 10.3390/w8100460, 2016.
  • 2. Li C., Cheng X., Li N., Du X., Yu Q., Kan G. A framework for flood risk analysis and benefit assessment of flood control measures in urban areas. International Journal of Environmental Research and Public Health, 13, 787, doi:10.3390/ijerph13080787, 2016.
  • 3. Li W., Lu C., Ding Y. A Systematic Simulating Assessment within Reach Greenhouse Gas Target by Reducing PM2.5 Concentrations in China. Polish Journal of Environmental Studies, 26 (2), 683, 2017.
  • 4. Chrabaszcz M., Mroz L. Tree Bark, a Valuable Source of Information on Air Quality. Polish Journal of Environmental Studies, 26 (2), 453, 2017.
  • 5. Filipiak -Florkiewicz A., Topolska K., Florkiewicz A., Cieslik E. Are Environmental Contaminants Responsible for ‘Globesity’? Polish Journal of Environmental Studies, 26 (2), 467, 2017
  • 6. Mahmood S., Ali S., Qamar M.A., Ashraf M.R., Atif M., Iqbal M., Hussain T. Hard Water and Dyeing Properties: Effect of Pre- and Post-Mordanting on Dyeing Using Eucalyptus globulus and Curcuma longa Extracts. Polish Journal of Environmental Studies, 26 (2), 747, 2017.
  • 7. Sulyman M., Namiesnik J., Gierak A. Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review. Polish Journal of Environmental Studies, 26 (2), 479, 2017.
  • 8. Sevik H., Cetin M., Guney K., Belkayali N. The Influence of House Plants on Indoor CO₂. Polish Journal of Environmental Studies. 26 (4), DOI:10.15244/pjoes/68875, 2017.
  • 9. Cetin M., Sevik H. Change of air quality in Kastamonu city in terms of particulate matter and CO₂ amount. Oxidation Communications 39 (4), 3394, 2016
  • 10. Sevik H., Cetin M., Belkayali N., Guney K. Chapter 8: The Effect of Plants on Indoor Air Quality, Environmental Sustainability and Landscape Management, ST. Kliment Ohridski University Press, Eds: Recep Efe, Isa Curebal, Abdalla Gad, Brigitta Tóth, p:760, ISBN:978-954-07-4140-6, chapter page: 138, 2016.
  • 11. Cetin M. Changes in the amount of chlorophyll in some plants of landscape studies. Kastamonu University Journal of Forestry Faculty, 16 (1), 239, 2016.
  • 12. Cetin M. A Change in the Amount of CO₂ at the Center of the Examination Halls: Case Study of Turkey. Studies on Ethno-Medicine 10 (2), 146, 2016.
  • 13. Cetin M. Sustainability of urban coastal area management: A case study on Cide. Journal of Sustainable Forestry 35 (7), 527, 2016.
  • 14. Sevik H., Ahmaida E.A., Cetin M. Chapter 31: Change of the Air Quality in the Urban Open and Green Spaces: Kastamonu Sample. Ecology, Planning and Design. Eds: Irina Koleva, Ulku Duman Yuksel, Lahcen Benaabidate, St. Kliment Ohridski University Press, ISBN: 978-954-07-4270-0, 409, 2017.
  • 15. Sevik H., Cetin M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Polish Journal of Environmental Studies, 24 (2), 689, 2015.
  • 16. Sevik H., Cetin M., Belkayali N. Effects of Forests on Amounts of CO₂: Case Study of Kastamonu and Ilgaz Mountain National Parks. Polish Journal of Environmental Studies, 24 (1), 253, 2015.
  • 17. Cetin M., Sevik H. Measuring the Impact of Selected Plants on Indoor CO₂ Concentrations. Polish Journal of Environmental Studies, 25 (3), 973, 2016.
  • 18. Cetin M. Consideration of Permeable Pavement in Landscape Architecture. Journal of Environmental Protection and Ecology, 16 (1), 385, 2015.
  • 19. Cetin M. Determination of bioclimatic comfort areas in landscape planning: A case study of Cide Coastline. Turkish Journal of Agriculture-Food Science and Technology 4 (9), 800-804, 2016
  • 20. Environmental Protection Department. China’s 2007 Environment Bullitin, 2007.
  • 21. Liu J., Hou K.P., Wang X.D., Yang P. Temporal-Spatial Variations of Concentrations of PM10 and PM2.5 in Ambient Air. Polish Journal of Environmental Studies, 25 (6), 2435, 2017.
  • 22. Zuo D., Cai S., Xu Z., Li F., Sun W., Yang X., Kan G., Liu P. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China. Theoretical and Applied Climatology, doi: 10.1007/s00704-016-1969-5, 2016.
  • 23. Sharma A. Seasonal to internannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification. Journal of Hydrology, 239, 232-239, 2000.
  • 24. Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3-A nonparametric probabilistic forecast model. Journal of Hydrology, 239, 249, 2000.
  • 25. May R.J., Dandy G.C., Maier H.R., Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling & Software, 23, 1289, 2008.
  • 26. May R.J., Maier H.R., Dandy G.C., Gayani Fernando T.M.K. Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling & Software, 23, 1312, 2008.
  • 27. Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology, 301, 75, 2005.
  • 28. Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. Journal of Hydrology, 301, 93, 2005.
  • 29. Kan G., Yao C., Li Q., Li Z., Yu Z., Liu Z., Ding L., He X., Liang K. Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stochastic Environmental Research and Risk Assessment, 29, 1345, 2015.
  • 30. Kan G., Li J., Zhang X., Ding L., He X., Liang K., Jiang X., Ren M., Li H., Wang F., Zhang Z., Hu Y. A new hybrid data-driven model for event-based rainfall-runoff simulation. Neural Computing & Applications, DOI: 10.1007/s00521-016-2200-4, 2015.
  • 31. Dong J., Zheng C., Kan G., Wen J., Zhao M., Yu J. Applying the ensemble artificial neural network-based hybrid data-driven model to daily total load forecasting. Neural Computing & Applications, 26 (3), 603, 2015.
  • 32. Kan G., He X., Ding L., Li J., Lei T., Liang K., Hong Y. An improved hybrid data-driven model and its application in daily rainfall-runoff simulation. IOP Conference Series: Earth and Environmental Science 46 (2016), 012029 (6th Digital Earth Summit), doi: 10.1088/1755-1315/46/1/012029, 2016.
  • 33. Kan G., He X., Li J., Ding L., Zhang D., Lei T., Hong Y., Liang K., Zuo D., Bao Z., Zhang M. A novel hybrid data-driven model for multi-input single-output system simulation. Neural Computing & Applications, doi:10.1007/s00521-016-2534-y, 2016.
  • 34. Kan G., Liang K., Li J., Ding L., He X., Hu Y., Amo -Boateng M. Accelerating the SCE-UA global optimization method based on multi-core CPU and many-core GPU. Advances in Meteorology, 8483728, 10 pages, http://dx.doi.org/10.1155/2016/8483728, 2016.
  • 35. Kan G., Lei T., Liang K., Li J., Ding L., He X., Yu H., Zhang D., Zuo D., Bao Z., Mark Amo -boateng , Hu Y., Zhang M. A multi-core CPU and many-core GPU based fast parallel shuffled complex evolution global optimization approach. IEEE Transactions on Parallel and Distributed Systems. DOI: 10.1109/TPDS.2016.2575822, 2016.
  • 36. Kan G., Zhang M., Liang K., Wang H., Jiang Y., Li J., Ding L., He X., Hong Y., Zuo D., Bao Z., Li C. Improving water quantity simulation & forecasting to solve the energy-water-food nexus issue by using heterogeneous computing accelerated global optimization method. Applied Energy, http://dx.doi.org/10.1016/j.apenergy.2016.08.017, 2016.
  • 37. Kan G., He X., Ding L., Li J., Hong Y., Zuo D., Ren M., Lei T., Liang K. Fast hydrological model calibration based on heterogeneous parallel computing accelerated shuffled complex evolution method. EngineeringOptimization, 2017.
  • 38. Kan G., He X., Ding L., Li J., Hong Y., Ren M., Lei T., Liang K., Zuo D., Huang P. Daily streamflow simulation based on improved machine learning method. Tecnologia y Ciencias del Agua, VIII (2), 51, 2017.
  • 39. Li Z., Kan G., Yao C., Liu Z., Li Q., Yu S. An improved neural network model and its application in hydrological simulation. Journal of Hydrologic Engineering, 19 (10), 04014019-1 – 04014019-17, 2014.
  • 40. Yin X.X., Wang L.H., Yu X.J., Du S.Y., Zhang H.C., Zhang Z.C. Arsenic Accumulation and Speciation of PM2.5 and elevant Health Risk Assessment in Allan, China. Polish Journal of Environmental Studies, 26 (2), 949, 2017

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-684d3681-9aa0-4e7a-8546-69a16bf59bbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.