PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Variations in the physicochemical profilevof Khushab coal under various environmental conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This work illustrates the proximate analysis on three types of coal samples obtained from Khushab mines in Pakistan. Analysis of the coal matrix was carried out to determine volatile matter, ash contents, moisture, fixed carbon contents, calorific values, and sulfur contents as per standards of American Society for Testing and Materials (ASTM). The results of proximate analysis show 30.46% fixed carbon content, 28.08% ash content, 6.96% total moisture content, and 34.5% volatile matter within sample A, whereas 40.56% volatile matter, 8.03% moisture content, 8.32% ash and 30.46% fixed carbon content was found in sample B. Sample C contained 15.44% volatile matter, 9.16% moisture content, 40.64% ash content, and 37.5% fixed carbon content, respectively. Sample B has higher calorific value and sulphur contents in comparison to A and C. These coal samples are of good quality from an industrial prospective, but they need to be desulphurized prior to industrial use for the sake of the environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.987-992,fig.,ref.

Twórcy

autor
  • Department of Chemistry, University of Agriculture, Faaisalabad, Pakistan
autor
  • Department of Chemistry, University of Agriculture, Faaisalabad, Pakistan
autor
  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
autor
  • Department of Chemistry, University of Lahore, Lahore, Pakistan
autor
  • Department of Chemistry, University of Lahore, Lahore, Pakistan
autor
  • Department of Chemistry, University of Agriculture, Faaisalabad, Pakistan

Bibliografia

  • 1. AZAD S. Environmental degradation due to coal mining in Baluchistan. Pol. J. Environ. Stud. 24, 4, 1815, 2015.
  • 2. JENDRUS R. Environmental Protection in Industrial Areas and Applying Thermal Analysis to Coal Dumps. Pol. J. Environ. Stud. 26 (1), 137, 2017.
  • 3. MOLANDA T. Physical-Chemical Properties of Coal Mine Waters of Old Adits and Spring Waters. Pol. J. Environ. Stud. 23 (2), 393, 2014.
  • 4. POMYKAŁA R., MAZURKIEWICZ M. Properties of Coal Gasification Wastes Essential to Determining Their Impact on the Environment. Pol. J. Environ. Stud. 24 (5), 2147, 2015.
  • 5. FAN J., WANG Y. Atmospheric Emissions of As, Sb, and Se from Coal Combustion in Shandong Province, 2005-2014. Pol. J. Environ. Stud. 25 (6), 2339, 2016.
  • 6. STROZIK G., JENDRUS R., MANOWSKA A., POPCYZK M. Mine Subsidence as a Post-Mining Effect in the Upper Silesia Coal Basin. Pol. J. Environ. Stud. 25 (2), 777, 2016.
  • 7. CEICKO Z., ZOLNOWSKI A.C., MADEJ M., WASIAK G., LISOWSKI J. Long-Term Effects of Hard Coal Fly Ash on Selected Soil Properties. Pol. J. Environ. Stud. 24 (5), 1949, 2015.
  • 8. BABARINDE A., ONYIAOCHA G.O. Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chem. Int. 2, 37, 2016.
  • 9. BOSAK M., HAJDUOVA Z., MAJERNIK M., ANDREJOVSKY P. Experimental-Energy Combustion of Biomass Combined with Coal in Thermal Power Plants. Pol. J. Environ. Stud. 24 (4), 1517, 2015.
  • 10. IQBAL M., KHERA R.A. Adsorption of copper and lead in single and binary metal system onto Fumaria indica biomass. Chem. Int. 1, 157b, 2015.
  • 11. JAFARINEJAD S. Control and treatment of sulfur compounds specially sulfur oxides (SOx) emissions from the petroleum industry: a review. Chem. Int. 2, 242, 2016.
  • 12. JAMAL M.A., MUNEER M., IQBAL M. Photo-degradation of monoazo dye blue 13 using advanced oxidation process. Chem. Int. 1, 12, 2015.
  • 13. STANISZEWSKI R. Heavy Metals in Waters and Sediments of Rivers Affected by Brown Coal Mine Waters. Pol. J. Environ. Stud. 23 96), 2217, 2014 .
  • 14. TRYBALSKI K., KEPYS W., KRAWCZYKOWSKI D., KRAWCZKOWSKA A., SZPONDER D. Physical Properties of Ash from Co-Combustion of Coal and Biomass. Pol. J. Environ. Stud. 23 (4), 1433, 2014 .
  • 15. QURESHI K., AHMAD M., BHATTI I., IQBAL M., KHAN A. Cytotoxicity reduction of wastewater treated by advanced oxidation process. Chem. Int. 1, 53, 2015 .
  • 16. KALEMBKIEWICZ J., CHMIELARZ U. Effects of Biomass Co-Combustion with Coal on Functional Speciation and Mobility of Heavy Metals in Industrial Ash. Pol. J. Environ. Stud. 22 (3), 741, 2013 .
  • 17. CHMURA D., MOLENDA T., BLONSKA A., WOZNIAK G. Sites of Leachate Inflows on Coalmine Heaps as Refuges of Rare Mountainous Species. Pol. J. Environ. Stud. 20 (3), 551, 2011 .
  • 18. ERDOGAN S., BAYSAL A., AKBA O., HAMAMCI C. Interaction of Metals with Humic Acid Isolated from Oxidized Coal. Pol. J. Environ. Stud. 16 (5), 671, 2007 .
  • 19. DEVILLERS J., BALABAN A.T. (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
  • 20. DIUDEA M.V. (Ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova, Huntington, 2001.
  • 21. GUTMAN I., FURTULA B. (Eds.), Novel Molecular Structure Descriptors Theory and Applications vols. I-II, Univ. Kragujevac, Kragujevac, 2010.
  • 22. TRINAJSTIC N. Chemical Graph Theory, Volume II, CRC Press, Inc., Boca Raton, Florida, 1983.
  • 23. YUAN Y., ZHOU B., TRINAJSTIC N. On Reciprocal reverse Wiener index. J. Math. Chem. 2009 .
  • 24. THOMAS L. Handbook of practical coal geology. New York, John Wiley and Sons, 338, 1992.
  • 25. Given P.H., Yarzab R.F. Analysis of the organic substance of coals: problems posed by the presence of mineral matter. Anal. Methods for Coal & Coal Prod. 2, 3, 1978.
  • 26. WOOD G.H., KEHN T.M., CARTER D.M., CULBERTSON W.C. Coal resource classification system of the U.S. Geological Survey. Geological Survey Circular 891, United States Geological Survey, Denver, 1983.
  • 27. MARINOV S.P., STEFANOVA M., STAMENOVA V., CARLEER R., YPERMAN J. Sulphur functionality study of steam pyrolyzed “Mequinenza” lignite using reductive pyrolysis technique coupled with MS and GC/MS detection systems. Fuel Proc. Technol. 86, 523, 2005.
  • 28. OLIVELLA M.A., PALACIOS J.M., VAIRAVAMURTHY A., DEL RIO J.C., DE LAS HERAS F.X.C. A study of sulphur functionalities in fossil fuels using destructive (ASTM and Py-GC-MS) and non-destructive (SEM-EDX, XANES and XPS) techniques. Fuel. 81, 405, 2002 .
  • 29. ZHOU A.N., MA X.L., SONG C.S. Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties. J. Phys. Chem. B. 110, 4699, 2006 .
  • 30. RAHIMEH N.F., SAEID A. Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Proc. Technol. 93, 45, 2012.
  • 31. CHAKRAVORTY R.N. Coal research laboratories, Canada centre for mineral and energy Technology, Ottawa, Ontario, Canada, 84, 1984.
  • 32. CHAKRAVORTY R.N., KAR K. Coal research laboratories, Canada Centre for mineral and energy Technology, Ottawa, Ontario, Canada, 86, 1996.
  • 33. SPEIGHT G.J. Handbook of Coal analysis. John willey and sons, 166, 2005.
  • 34. VAN, KREVELIN, D.W., SCHUYER, J. Coal Science: Aspects of Coal Constitution. Elsevier, Amsterdam, Netherlands, 1993.
  • 35. ASTM D-3173 Standard method for moisture analysis in sample of coal and coke.
  • 36. ASTM D-3175 Standard Method of Test for volatile matter of Coal.
  • 37. ASTM D-3174 Standard Method of Test for ash contents of Coal.
  • 38. ASTM D-388 Standard Classification of Coals by Rank
  • 39. ASTM D-2015 Standard Methods for Designating the Size of Coal from Sieve Analysis.
  • 40. ASTM D-3177 Standard Test Methods for Total Sulphur Analysis in coal and coke.
  • 41. XUAN L., WENKAI L., HEBING Z., HAIPENG N. Comprehensive Landscape Ecology Stability Assesment of a Coal Gangue Backfi II Reclamation Area. Pol. J. Environ. Stud. 25 (3), 1305, 2016 .
  • 42. GE X., MA J., CHANG L., YUAN J., SU X., WANG H., XIAO Y. Monitoring and Investigation Methane Leakage in Coal Gas Production. Pol. J. Environ. Stud. 25 (3), 1005, 2016 .
  • 43. SAUER P., FIALA P., DVORAK A., KOLINSKY O., PRASEK J., FERBAR P., REDERER L. Improving Quality of Surface Waters with Coalition Projects and Environmental Subsidy Negotiation. Pol. J. Environ. Stud. 24 (3), 1299, 2015.
  • 44. SAKOL G., MIROSLASKI J., BREWCZYNSKI P.Z. Efficient Pb Translocation by Purple petticoats cv. of Heuchera L. from Contaminated Soil in a Coal Basin. Pol. J. Environ. Stud. 23 (6), 2199, 2014.
  • 45. KIERCZAK J., CHUDY K. Mineralogical, Chemical, and Leaching Characteristics of Coal Combustion Bottom Ash from a Power Plant Located in Northern Poland. Pol. J. Environ. Stud. 23 (5), 1627, 2014.
  • 46. KOSTURKIEWICZ B., JANEWICZ A., MAGDZIARZ A. Results of Briquetting and Combustion Process on Binder-Free Coking Coal. Pol. J. Environ. Stud. 23 (4), 1385, 2014.
  • 47. KALEMBKIEWICZ J., CHMIELARZ U. Effects of Biomass Co-Combustion with Coal on Functional Speciation and Mobility of Heavy Metals in Industrial Ash. Pol. J. Environ. Stud. 22 (3), 741, 2013.
  • 48. CEIPEK J., KURAZ V., FROUZ J. Hydrological Properties of Soils in Reclaimed and Unreclaimed Sites after Brown-Coal Mining. Pol. J. Environ. Stud. 22 (3), 645, 2013.
  • 49. SAHNI A., SARASWATI P.K., RANA R.S., KUMAR K., SINGH H., ALIMOHAMMADIAN H., SAHNI N., ROSE K.D., SINGH L., SMITH T. Temporal constraints and depositional palaeoenvironments of the Vastan lignite sequence, Gujarat: Analogy for the Cambay Shale hydrocarbon source rock. Indian J. Petrol. Geol. 15, 1, 2006.
  • 50. VASSILEV S., KITANO K., VASSILEVA C. Some relationships between coal rank and chemical and mineral composition. Fuel 75, 1537, 1996.
  • 51. ISHAQ M., AHMED I., SHAKIRULLAH M., BAHADUR A., TAJ N. Characterization of Khushab coal (Punjab Pakistan). J. Chem. Soc. Pak. 24 (4), 240, 2002.
  • 52. VASSILEV S., KITANO K., VASSILEVA C. Relations between ash yield and chemical and mineral composition of coals. Fuel 76, 3, 1997.
  • 53. FINKELMAN R. The inorganic geochemistry of coal: a scanning electron microscopy view. Scanning Microscopy 2, 97, 1988.
  • 54. VASSILEV S., TASCON J. Methods for characterization of inorganic and mineral matter in coal: a critical overview. Energy and Fuels 17, 271, 2003.
  • 55. LABAN T., ATKIN C. Regional effects and efficiency of flue gas desulphurization in the Carpathian Basin. Atm. Environ. 41, 8500, 1999.
  • 56. BENABDALLAH N.K., HARRACHE D., MIR A., DE LA GUARDIA M., BENHACHEM F.Z. Bioaccumulation of trace metals by red alga Corallina elongata in the coast of Beni Saf, west coast, Algeria. Chem. Int. 3, 220, 2017.
  • 57. JAFARINEJAD S. Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chem. Int. 3 (3), 241, 2017.
  • 58. LEGROURI K., KHOUYA E., HANNACHE H., EL HARTTI M., EZZINE M., NASLAIN R. Activated carbon from molasses efficiency for Cr(VI), Pb(II) and Cu(II) adsorption: A mechanistic study. Chem. Int. 3, 301, 2017.
  • 59. MAJOLAGBE A.O., ADEYI A.A., OSIBANJO O., ADAMS A.O. OJURI O.O. Pollution vulnerability and health risk assessment of groundwater around an engineering Landfill in Lagos, Nigeria. Chem. Int. 3, 58, 2017.
  • 60. OGUNDIPE K.D., BABARINDE A. Comparative study on batch equilibrium biosorption of Cd(II), Pb(II) and Zn(II) using plantain (Musa paradisiaca) flower: kinetics, isotherm, and thermodynamics. Chem. Int. 3, 135, 2017.
  • 61. UKPAKA C., IZONOWEI T. Model Prediction on the Reliability of Fixed Bed Reactor for Ammonia Production. Chem. Int. 3, 46, 2017.
  • 62. UKPAKA C.P., IGWE F.U. Modeling of the velocity profile of a bioreactor: the concept of biochemical process. Chem. Int. 3, 258, 2017.
  • 63. ZHANG T., WANG L., HEN Y. Evaluating the Sensitivity of Ecosystems to Soil Salinization in the Manas River Basin. Pol. J. Environ. Stud. 26 (2), 917, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-67d9db86-7d4c-40aa-8187-99dbec27fced
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.