PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Numerical investigation of temperature distribution of thermal discharge in a river-type reservoir

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A 3-D thermal discharge numerical model based on the Navier-Stokes equation, the k–ε turbulence model, and the temperature diffusion-controlled equation was developed to simulate the 3-D distribution of thermal discharge along a river-type reservoir under different discharge conditions, hydrological conditions and reservoir water levels. Results showed that the thermal discharge from the power plant would have a smaller effect on a deep-water reservoir. Neither 1ºC, 2ºC nor 3ºC isotherm appear in any scenario conditions. For dam water depths of 155 m and 175 m, a small envelope area of 0.05ºC isothermal line was predicted. The isothermal lines of 0.05ºC and 0.1ºC covered a small area in all scenario conditions. The temperature increase 500 m downstream of the discharge point was predicted to be less than 0.05ºC during dry seasons. The predicted stability time of the temperature increase in each layer was 20 days. It evidences the thermal impact intensity and the extent is different under three scenario conditions. The predicted space–time distribution of the cooling water and the temperature increase provide scientific bases for designing water intake and water management. In the future, the influence of thermal discharge on water quality and aquatic organisms of the reservoir will be discussed based on the simulation results of this study, that is, the variation law of water temperature caused by thermal discharge.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3909-3917,fig.,ref.

Twórcy

autor
  • Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China
autor
  • Guangdong Key Laboratory of Coastal Ocean Variability and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China
autor
  • School of Resource and Environmental Science, Wuhan University, Wuhan, China

Bibliografia

  • 1. VIGANDER S., ELDER R.A., BROOKS N.H. Internal hydraulics of thermal discharge diffusers. Journal of the Hydraulics Division, 96, 509, 1970.
  • 2. KOKAJI I. The present status for thermal discharge of nuclear power plant. Progress in Nuclear Energy, 29, 413, 1995.
  • 3. LANGFORD T.E.L. Thermal discharges and pollution. Encyclopedia of Ocean Sciences 359 (9317), 10, 2001.
  • 4. ZHAO Y.J., ZENG L., ZHANG A.L., WU Y.H. Response of current, temperature, and algae growth to thermal discharge in tidal environment. Ecological Modelling, 318, 283, 2015.
  • 5. ARIELI R.N., ALMOGI-LABIN A., ABRAMOVICH S., HERUTET B. The effect of thermal pollution on benthic foraminiferal assemblages in the Mediterranean shoreface adjacent to Hadera power plant (Israel). Marine Pollution Bulletin, 62 (5), 1002, 2011.
  • 6. CARDOSO-MOHEDANO J.G., BERNARDELLO R., SANCHEZ-CABEZA J.A., RUIZ-FERNÁNDEZ A.C., ALONSO-RODRIGUEZ R., CRUZADO A. Thermal impact from a thermoelectric power plant on a tropical coastal lagoon. Water Air & Soil Pollution, 226 (1), 1, 2015.
  • 7. BORK I., MAIER-REIMER E. On the spreading of power plant cooling water in a tidal river applied to the river Elbe. Advances in Water Resources, 1 (3), 161, 1978.
  • 8. RAPTIS C.E., BOUCHER J.M., PFISTER S. Assessing the environmental impacts of freshwater thermal pollution from global power generation in LCA. Science of the Total Environment, 580, 1014, 2016.
  • 9. RAPTIS C.E., PFISTER S. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy, 97, 46, 2016.
  • 10. CHENG Y.L., JING Q.Z.H. Effects of topography on diffusion of thermal discharge in power plant. Procedia Environmental Sciences, 11 (11), 618, 2011.
  • 11. JIA H.L., ZHENG S., XIE J., YING X.M., ZHANG C.P. Influence of geographic setting on thermal discharge from coastal power plants. Marine Pollution Bulletin, 111 (1-2), 106, 2016.
  • 12. TITELBOIM D., ALMOGI-LABIN A., HERUT B., KUCERA M., SCHMIDT C., HYAMS-KAPHZAN O., OVADIA O., ABRAMOVICH S. Selective responses of benthic foraminifera to thermal pollution. Marine Pollution Bulletin, 105 (1), 324, 2016.
  • 13. LI X.Y., Li B., SUN X.L. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China. Marine Pollution Bulletin, 81 (1), 210, 2014.
  • 14. LOGAN L.H., STILLWELL A.S. Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus. Applied Energy, 210, 434, 2018.
  • 15. KIRILLIN G., SHATWELL T., KASPRZAK P. Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. Journal of Hydrology, 496 (496), 47, 2013.
  • 16. FENG L., CHEN B., HAYAT T., ALSAEDI A., AHMAD B. Modelling the influence of thermal discharge under wind on algae. Physics and Chemistry of the Earth, s 79–82, 108, 2015.
  • 17. MARTI-CARDONA B., BOFILL M.A., RODRIGUEZ J.P., PIPIA L. Thermal remote sensing for reservoir modelling and management. ESA Living Planet Symposyum. 2016.
  • 18. PARSHAKOVA Y.N., LYUBIMOVA T.P. Computer modelling of technogenic thermal pollution zones in large water bodies. Computer Simulations in Physics and beyond, 955, 01, 2017.
  • 19. GANGULY S., KUMAR M.S.M., DATE A., AKBARZADEH A. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer. Applied Thermal Engineering, 115, 756, 2017.
  • 20. AZUCENA D.C., HECTOR B.P., HERMILO R.L. Numerical modeling of water thermal plumes emitted by thermal power plants. Water, 8 (11), 482, 2016.
  • 21. NIKULENKOV A.M., DVORNIKOV A.Y., RUMYNIN V.G., RYABCHENKO V.A., VERESCHAGINA E.A. Assessment of allowable thermal load for a river reservoir subject to multi-source thermal discharge from operating and designed beloyarsk NPP Units (South Ural, Russian Federation). Environmental Modeling and Assessment, 3, 1, 2017.
  • 22. POORNIMA E.H., RAJADURAI M., RAO T.S., ANUPKUMAR B., RAJAMOHAN R., NARASIMHAN S.V., RAO V.N.R., VENUGOPALAN V.P. Impact of thermal discharge from a tropical coastal power plant on phytoplankton. Journal of Thermal Biology, 30 (4), 307, 2005.
  • 23. CHUANG Y.L., YANG H.H., LIN H.J. Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. Journal of Guangxi Vocational & Technical College, 61 (4), 197, 2012.
  • 24. BEDRI Z., BRUEN M., DOWLEY A., MASTERSON B. Environmental consequences of a power plant shut-down: a three-dimensional water quality model of Dublin Bay. Marine Pollution Bulletin, 71 (1–2), 117, 2013.
  • 25. KOLLURU V.S., BUCHAK E.M., BRINKMANN P.E. Hydrodynamic modeling of coastal LNG cooling water discharge. Journal of Energy Engineering, 129 (1),16, 2012.
  • 26. GANGULY S., KUMAR M.M. Geothermal reservoirs-A brief review. Journal of the Geological Society of India, 79 (6), 589, 2012.
  • 27. WU J., BUCHAK E.M., EDINGER J.E., KOLLURU V.S. Simulation of cooling-water discharges from power plants. Journal of Environmental Management, 61 (1), 77, 2001.
  • 28. LOWE S.A., SCHUEPFER F., DUNNING D.J. Case Study: Three-dimensional hydrodynamic model of a power plant thermal discharge. Journal of Hydraulic Engineering, 135 (4), 247, 2009.
  • 29. LU W.Z., ZHANG W.S., CUI C.Z.A., LEUNG A.Y.T. numerical analysis of free-surface flow in curved open channel with velocity-pressure-free-surface correction. Computational Mechanics, 33, 215, 2004.
  • 30. ZHANG W.S., ZHAO Y.X., XU Y.H., WANG Y.G., PENG H., XU G.H. 2-D numerical simulation of radionuclide transport in the lower Yangtze River. Journal of Hydrodynamics, 24, 702, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6721ee97-fbbb-42c3-9983-1bfd1b878866
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.