PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 3 |

Tytuł artykułu

Differential expression of the c‑fos protein and synaptophysin in zebrin II positive and zebrin II negative cerebellar cortical areas in 4‑aminopyridine seizures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study examined temporal activation patterns of rat cerebellar cortical neurons in 4‑aminopyridine induced seizures, using c‑fos protein as a marker of neuronal activity. C‑fos‑containing cells were counted in each cerebellar cortical layer, and cell count was compared between zebrin II positive and zebrin II negative bands of the lobules of the vermis and cerebellar hemispheres. We found significant activation of granule cells and interneurons of the molecular layer in zebrin II positive bands. The Purkinje cells, in contrast, exhibited non‑significant, scattered c‑fos immunoreactivity across all bands. Fluctuation of synaptophysin expression in the mossy fibre rosettes of the granular layer was determined via light microscopic immunohistochemistry. We detected a transient, significant decrease in synaptophysin staining density following 4‑aminopyridine seizures, which may indicate short‑term synaptic depression. We also identified different timing of increased c‑fos expression in the neurons of the cerebellar cortex in different cortical zones. In particular, the activation pattern of the interneurons of the molecular layer reflected the climbing fibre distribution, reflecting the zonal olivo‑cortico‑nuclear organization. Seizure‑induced activation of the granule cells corresponded with the zebrin II positive zones. This observation raises the possibility that zebrin II positive compartments may be more susceptible to cerebellar convulsions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

3

Opis fizyczny

p.238-250,fig.,ref.

Twórcy

  • Department of Anatomy, Faculty of Medicine, University of Szeged, Szeged, Hungary
autor
  • Department of Anatomy, Faculty of Medicine, University of Szeged, Szeged, Hungary
autor
  • Department of Anatomy, Faculty of Medicine, University of Szeged, Szeged, Hungary

Bibliografia

  • Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II re‑ veals its identity with aldolase C. Development 120: 2081–2090.
  • Angaut P, Sotelo C (1975) Diversity of mossy fibres in the cerebellar cortex in relation to different afferent systems: an experimental electron mi‑ croscopic study in the cat. Brain Res 95: 179–189.
  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one‑map hy‑ pothesis. Nat Rev Neurosci 10: 670–681.
  • Azizi SA, Mihailoff GA, Burne RA, Woodward DJ (1981) The pontocerebellar system in the rat: an HRP study. I. Posterior vermis. J Comp Neurol 197: 543–548.
  • Balaji J, Armbruster M, Ryan TA (2008) Calcium control of endocytic capac‑ ity at a CNS synapse. J Neurosci 28: 6742–6749.
  • Boop S, Wheless J, Van Poppel K, McGregor A, Boop FA (2013) Cerebellar seizures. Report of 2 cases. J Neurosurg Pediatrics 12: 288–292.
  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen ex‑ pressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291: 538–552.
  • Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Re‑defining the cerebellar cortex as an assembly of non‑uniform Purkinje cell microcircuits. Nat Rev Neurosci 16: 79–93.
  • Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21: 6283–6291. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm‑Mathisen J, Danbolt  NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a  glutamate‑gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neu‑ rosci 18: 3606–3619.
  • De Zeeuw CI, Hoogland TM (2015) Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci 9: 246.
  • Ebner TJ, Wang X, Gao W, Cramer SW, Chen G (2012) Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity. Cerebellum 11: 418–419.
  • Gordon SL, Harper CB, Smillie KJ, Cousin MA (2016) A fine balance of syn‑ aptophysin levels underlies efficient retrieval of synaptobrevin II to syn‑ aptic vesicles. PLoS One 11: e0149457.
  • Hawkes R, Colonnier M, Leclerc N (1985) Monoclonal antibodies reveal sag‑ ittal banding in the rodent cerebellar cortex. Brain Res 333: 359–365.
  • Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6: 147–158.
  • Helleringer R, Chever O, Daniel H, Galante M (2017) Oxygen and glucose deprivation induces Bergmann glia membrane depolarization and Ca2+ rises mainly mediated by K+ and ATP increases in the extracellular space. Front Cell Neurosci 11: 349.
  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev 28: 370–490.
  • Honavar M, Meldrum BS (2002) Epilepsy. In: Graham DI, Lantos P, editors. Greenfield’s Neuropathology. Arnold, London, p. 899–941.
  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuro‑ nal transport of herpes simplex virus type 1. J Neurosci 19: 1446–1463.
  • Hosoi N, Holt M, Sakaba T (2009) Calcium dependence of exo‑ and endocy‑ totic coupling at a glutamatergic synapse. Neuron 63: 216–229.
  • Hull C, Studholme K, Yazulla S, von Gersdorff H (2006) Diurnal changes in exocytosis and the number of synaptic ribbons at active zones of an ON‑type bipolar cell terminal. J Neurophysiol 96: 2025–2033.
  • Ito M (1984) Cerebellum and Neuronal Control, Raven Press, New York. Jackman SL, Choi SY, Thoreson WB, Rabl K, Bartoletti TM, Kramer RH (2009) Role of the synaptic ribbon in transmitting the cone light re‑ sponse. Nat Neurosci 12: 303–310.
  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefron‑ tal cortex of a nonhuman primate. J Neurosci 23: 8432–8444.
  • Kim JH, von Gersdorff H (2009) Traffic jams during vesicle cycling lead to synaptic depression. Neuron 63: 143–145.
  • Kovács A, Mihály A, Komáromi A, Gyengési E, Szente  M, Weiczner R, Krisztin‑Péva B, Szabó G, Telegdy G (2003) Seizure, neurotransmitter re‑ lease, and gene expression are closely related in the striatum of 4‑ami‑ nopyridine‑treated rats. Epilepsy Res 55: 117–129.
  • Leclerc N, Beesley PW, Brown I, Colonier M, Gurd JW, Paladino T, Hawkes R (1989) Synaptophysin expression during synaptogenesis in the rat cere‑ bellar cortex. J Comp Neurol 280: 197–212.
  • Li R, Li Q, Chu XL, Tao T, Li L, He CQ, Gao FY (2017) Trace eyeblink con‑ ditioning is associated with changes in synaptophysin immunoreactiv‑ ity in the cerebellar interpositus nucleus in guinea pigs. Biosci Rep 38: BSR20170335.
  • Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100: 181–186.
  • Masliah E, Terry RD, Alford  M, DeTeresa R (1990) Quantitative immuno‑ histochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sec‑ tions. J Histochem Cytochem 38: 837–844.
  • Mateos JM, Benítez R, Elezgarai I, Azkue JJ, Lázaro E, Osorio A, Bilbao A, Doñate F, Sarría R, Conquet F, Ferraguti F, Kuhn R, Knöpfel T, Grandes P (2001) Parasagittal compartmentalization of the metabotropic gluta‑ mate receptor mGluR1b in the cerebellar cortex. Eur J Anat 5: 15–21.
  • Matsui K, Jahr CE, Rubio ME (2005) High‑concentration rapid transients of glutamate‑mediated neural‑glial communication via ectopic release. J Neurosci 25: 7538–7547.
  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266: 458–461.
  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cor‑ tex of the primate. J Neurosci 21: 700–712.
  • Mihailoff GA, Burne RA, Azizi SA, Norell G, Woodward DJ (1981) The ponto‑ cerebellar system in the rat: an HRP study. II. Hemispheral components. J Comp Neurol 197: 559–577.
  • Mihály A, Bencsik K, Solymosi T (1990) Naltrexone potentiates 4‑aminopyr‑ idine seizures in the rat. J Neural Transm Gen Sect 79: 59–67.
  • Mihály A, Szente M, Dubravcsik Zs, Boda, B, Király E, Nagy T, Domonkos A (1997) Parvalbumin and calbindin containing neurons express c‑fos protein in primary and secondary (mirror) epileptic focuses of the rat neocortex. Brain Res 761: 135–145.
  • Mihály A, Szakács R, Bohata C, Dobó E, Krisztin‑Péva B (2001) Time‑de‑ pendent distribution and neuronal localization of c‑fos protein in the rat hippocampus following 4‑aminopyridine seizures. Epilepsy Res 44: 97–108.
  • Mohamed IS, Otsudo H, Ferrari P, Ochi A, Carter Snead O, Cheyne D (2011) Neuromagnetic cerebellar activation during seizures arising from the motor cortex. Epilepsy Res 96: 283–287.
  • Paukert M, Huang YH, Tanaka K, Rothstein JD, Bergles DE (2010) Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J Neurosci 30: 7290–7299.
  • Pijpers A, Ruigrok TJ (2006) Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J Comp Neurol 496: 513–528.
  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroenceph Clin Neurophysiol 32: 281–294.
  • Rocher AB, Chapon F, Blaizot X, Baron JC, Chavois C (2003) Resting‑state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a  study in baboons. NeuroImage 20: 1894–1898.
  • Russ JC (2011) The Image Processing Handbook, sixth ed. CRC Press, USA. Sillitoe RV, Hawkes R (2002) Whole‑mount immunohistochemistry: a high‑throughput screen for patterning defects in the mouse cerebel‑ lum. J Histochem Cytochem 50: 235–244.
  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage 44: 489–501.
  • Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional orga‑ nization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24: 8771–8785.
  • Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500: 1076–1092.
  • Szakács R, Weiczner R, Mihály A, Krisztin‑Péva B, Zádor Z, Zádor E (2003) Non‑competitive NMDA receptor antagonists moderate seizure‑in‑ duced c‑fos expression in the rat cerebral cortex. Brain Res Bull 59: 485–493.
  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nature Neurosci 10: 735–742.
  • Thesleff S (1980) Aminopyridines and synaptic transmission. Neuroscience 5: 1413–1419.
  • Tóth Z, Molnár G, Mihály A, Krisztin‑Péva B, Morvai M, Kopniczky Z (2015) Immunohistochemistry of cerebellar seizures: mossy fiber afferents play an important role in seizure spread and initiation in the rat. Acta Histochem 117: 47–55.
  • Tóth Z, Mihály A, Mátyás A, Krisztin‑Péva B (2018) Non‑competitive antag‑ onists of NMDA and AMPA receptors decrease seizure‑induced c‑fos protein expression in the cerebellum and protect against seizure symp‑ toms in adult rats. Acta Histochem 120: 236–241.
  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neu‑ rosci 21: 370–375.
  • Voogd J, Ruigrok TJ (2004a) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 233: 5–21.
  • Voogd J, Ruigrok TJ (2004b) Cerebellum and precerebellar nuclei. In: The Human Nervous System (Paxinos G, Mai JK, Eds). Elsevier, Amsterdam, The Netherlands, p. 321–392.
  • Wiedenmann B, Franke WW (1985) Identification and localization of synap‑ tophysin, an integral membrane glycoprotein of Mr 38,000 characteris‑ tic of presynaptic vesicles. Cell 41: 1017–1028.
  • Willoughby JO, Mackenzie  L, Medvedev A, Hiscock JJ (1995) Distribution of Fos‑positive neurons in cortical and subcortical structures after pi‑ crotoxin‑induced convulsions varies with seizure type. Brain Res 683: 73–87.
  • Xiao J, Cerminara NL, Kotsurovsky Y, Aoki H, Burroughs A, Wise AK, Luo Y, Marshall SP, Sugihara I, Apps R, Lang EJ (2014) Systematic regional varia‑ tions in Purkinje cell spiking patterns. PLoS One 9: e105633.
  • Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, Ruigrok TJ, Hoebeek FE, De Zeeuw CI, Schonewille M (2014) Cerebellar modules operate at dif‑ ferent frequencies. Elife 3: e02536.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-670cc1e5-0f43-46a8-9f0f-0c55da64e2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.