PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 1 |

Tytuł artykułu

Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The nature of nanoparticles and their effective application has been given considerable attention by researchers in various fields, mainly agriculture. The present investigation examined the foliar effect of zinc oxide nanoparticles (ZnO-NPs) on plant growth profiling, photosynthetic machinery and associated biochemical changes in tomato (Lycopersicon esculentum) following growth in various concentrations (10, 50, 100 and 200 ppm ZnO-NPs). After 15 days of transplantation, ZnO-NPs sprayed to the foliage of tomato plant for five days (35-39 DAS). Treated plants at days 45 and 60 (pre-flowering stage), registered an increase in growth and biomass over their respective control. Among different concentrations of ZnO-NPs [0 (control), 10, 50, 100 and 200 ppm], 50 ppm proved to be the optimum foliar spray treatment and increase the SPAD chlorophyll (27% and 32%), net photosynthetic rate (31% and 35%), leaf protein content (17% and 22%), catalase (CAT, 55% and 61%), peroxidase (POX, 68% and 75%) and superoxide dismutase (SOD, 50% and 55%) activity. Interestingly, significant increases in lycopene (23%), β-carotene (25%) content followed by a decrease in the content of ascorbic acid (38%) in response to above treatments. Number of fruits and fruit yield in the treated plants were also higher (21% and 28%) as compare to respective controls. These results suggest that ZnO-NPs interact with meristematic cells triggering biochemical pathways conductive to an enhancement of growth attribute. Further studies are needed to investigate the mechanisms and the side effects of ZnO-NPs on tomato plants

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

1

Opis fizyczny

p.87-105,fig.,ref.

Twórcy

autor
  • Department of Botany, Aligarh Muslim University, Aligarh, India
autor
  • Department of Botany, Aligarh Muslim University, Aligarh, India

Bibliografia

  • ALLOWAY B.J. 2004. In zinc in soil and crop nutrition. International Zinc Association. Brussels, Belgium.
  • AN J., ZHANG M., WANG S., TANG A. 2008. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles. PVP, LWT, Food Sci. Tech., 41: 1100–1107.
  • ANDRE C.M., LARONDELLE Y., EVERS D. 2010. Dietary antioxidants and oxidative stress froma human and plant perspective: a review. Curr. Nutri. Food Sci., 6: 2–12.
  • BATES L.S., WALDEEN R.P., TEARE I.D. 1973.Rapid determination of free proline water stress studies. Plant Soil, 39: 205–207.
  • BATSMANOVA L.M., GONCHAR L.M., TARAN N.Y., OKANENKO A.A. 2013. Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. Proceedings of the International Conference on Nanomaterials. Applications and properties, September Crimea, Ukraine.
  • BEAUCHAMP C.O., FRIDOVICH I. 1971. Superoxide dismutase: improved assays and assays applica-ble to acrylamide gels. Ann. of clin. Biochem., 44: 276–287.
  • BERNHARDT E.S., COLMAN B.P., HOCHELLA M.F., CARDINALE B.J., NISBET R.M., RICHARDSON C.J., YIN L. 2010. An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual., 39: 1–12.
  • BONDARENKO O., JUGANSON K., IVASK A., KASEMETS K., MORTIMER M., KAHRU A. 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol., 87(7): 1181–1200.
  • BOSE B., SRIVASTAVA H.S. 2001. Absorption and accumulation of nitrate in plants. Influence of environmental factors. Ind. J. Exp. Biol., 39: 101–110.
  • BRADFORD M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann. clin. Biochem., 72: 248–254.
  • BURKLEW C.E., ASHLOCK J., WINFREY W.B., ZHANG B. 2012. Effects of aluminum oxide nanopar-ticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum).PLoS ONE7.
  • CAKMAK I. 2000. Role of zinc in protecting plant cells from reactive oxygen species. New Phytol., 146: 185–205.
  • CAVERZAN A., CASASSOLA A., BRAMMER S.P. 2016. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol., 39(1): 1–6.
  • CHANCE B., MAEHLY A.C. 1956. Assay of catalase and peroxidases. Methods Enzymol., 2: 764–775.
  • CONNOLLY M., FERNANDEZ M., CONDE E., TORRENT F., NAVAS J.M., FERNANDEZ-CRUZ M.L. 2016. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci. Total Environ., 551–552, 334–343.
  • DWIVEDI R.S., RANDHAWA N.S. 1974. Evaluation of rapid test for hidden hunger of zinc in plants. Plant Soil, 40: 445–451.
  • FABREGA J., LUOMA S.N., TYLER C.R., GALLOWAY T.S., LEAD J.R. 2011. Silver nanoparticles: be-haviour and effects in the aquatic environment. Environ. Int., 37: 517–531.
  • FAIZAN M., FARAZ A., YUSUF M., KHAN S.T., HAYAT S. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2): 678–686.
  • GARCIA-SANCHEZ S., BERNALES I., CRISTOBAL S. 2015. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genom, 16: 341.
  • JAWORSKI E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biophy. Res. Comm., 43: 1274–9.
  • KHAN J., BRENNAND D.M., BRADLEY N., GAO B., BRUCKDORFER R., JACOBS M. 1998. 3 Nitroty-rosine in the proteins of human plasma determined by an ELISA method. J. Biochem., 330: 795–801.
  • KHAN S.T., AHMAD J., AHAMED M., MUSARRAT J., AL-KHEDHAIRY A.A. 2016. Zinc oxide and ti-tanium dioxide nanoparticles induce oxidative stress, inhibit growth and attenuate biofilm formation activity of Streptococcus mitis. J. Biol. Inorg. Chem., 21: 295–303.
  • KHODAKOVSKAYA M.V., DE SILVA K., BIRIS A.S., DERVISHI E., VILLAGARCIA H. 2012. Carbon nano-tubes induce growth enhancement to tobacco cells. ACS Nano,6: 2128–2135.
  • KOLE P., RANDUNU K.M., CHOUDHARY P., PODILA R., CHUN K.P., RAO A.M., MARCUS R.K. 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechn., 13–37.
  • KUREPA J., PAUNESKU T., VOGT S., ARORA H., RABATIC B. M., LU J. 2010. Uptake and distribu-tion of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett., 10: 2296–2302.
  • MARSCHNER H. 1993. Zinc uptake from soil. In: Zinc in soils and plants. Ed. A.D. Robson. Kluwer Academic Publishers, Dordrecht, pp. 59–79.
  • MONICA R.C., CREMONINI R. 2009. Nanoparticles and higher plants. Caryol., 62: 161–165.
  • MUKHERJEE S., CHOWDHURY D., KOTCHERLAKOTA R., PATRA S.B.V., BHADRA M.P., SREEDHAR B.,PATRA C.R. 2014. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranos.,4: 316e335.
  • MUKHERJEE A., SUN Y., MORELIUS E., TAMEZ C., BANDYOPADHYAY S., NIU G., WHITE J.C., PER-ALTA-VIDEA J.R., GARDEA-TORRESDEY J.L. 2016. Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.). A Life Cycle Study. Front. Plant Sci., 6: 1242.
  • NOJI T., KAMIDAKI C., KAWAKAMI K., SHEN J.R., KAJINO T., FUKUSHIMA Y., SEKITOH T., ITOH S. 2011. Photosynthetic oxygen evolution in mesoporous silica material adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Lang., 27: 705–713.
  • PANDEY R.R., SAINI K.K., DHAYAL M. 2010.Using nano-arrayed structures in sol-gel derived Mn2+doped TiO2 for high sensitivity urea biosensor. J. Biosen & Bioelect.,2155: 6210.
  • PENG Y.H., TSAI Y.C., HSIUNG C.E., LIN Y.H., SHIH Y. 2017. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J. Hazard. Mater., 322: 348–356.
  • PRASADT.N.V.K.V., SUDHAKAR P., SREENIVASULU Y., LATHA P., MUNASWAMY V., REDDY, K.R., SREEPRASADT.S.P., SAJANLAL R., PRADEEP T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutri., 35: 905–927.
  • RAGHURAMULU N., NAIR M.K., KALYANASUNDARUM S. 1983. A Manual of laboratory techniques. National Institute of Nutrition, Silver Prints Hyderabad. raliya r., taraFdar J.C. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2(1): 48–57.
  • RAMESH R., TARAFDAR J.C. 2014. ZnO nanoparticle biosynthesis and its effect on phosphorous-mo-bilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2: 48–57.
  • RANGANNA S., 1976. Manual of analysis of fruit and vegetable products. McGraw Hill, New Delhi, pp. 77.
  • RASKAR S.V., LAWARE S.L. 2014. Effect of zinc oxide nanoparticles on cytology and seed germina-tion in onion. Int. J. Curr. Micr. Appl. Sci.,3: 467–473.
  • RAY P.D., HUANG BO-WEN, TSUJI Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal., 24(5): 981–990.
  • RITTNER M.N., ABRAHAM T. 1998. Nanostructed materials: an overview and commericial analysis.Int. J. f Min., Met, Mat., 50: 37–38.
  • SADASIVAM S., MANICKAM A. 1997. Carotenes. In: Biochemical methods. New Age International Publishers, New Delhi, pp. 187–188.
  • SCHWAB F., ZHAI G., KERN M., TURNER A., SCHNOOR J.L., WIESNER M.R. 2015. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants. Critical review Nanotox.,10: 257–278.
  • SCOTT N., CHEN H. 2002. Nanoscale science and engineering for agriculture and food systems. National Planning Workshop November 18–19
  • WASHINGTON DC. SEDGHI M., HADI M., TOLUIE S.G. 2013. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann. West Uni Timisoara ser. Biol., 2: 73–78.
  • SEWELAM N., KAZAN K., SCHENK P.M. 2016. Global plant stress signaling: reactive oxygen species at the cross-road. Front. Plant Sci., 7: 187.
  • SIDDIQUI M.H., AL-WHAIBI M.H., FAISAL M., AL SAHLI A.A. 2014. Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem., 33: 2429–2437.
  • SIRELKHATIM A., SHAHROM M., AZMAN S., NOORH.M.K., CHUOA.L., SITIK.M. B., HABSAH H., DASMAWATI M. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro Nano Lett., 7(3): 219–242.
  • SRIVASTAVA H.S. 1980. Regulation of nitrate reductase activity in higher plants. Phytochem., 19: 725–733.
  • STAMPOULIS D., SINHA S.K., WHITE J.C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Tech., 43: 9473–9479.
  • TIWARI S.B., WANG S., HAGEN G., GUILFOYLE T.J. 2005. Transfection assays with Arabidopsis protoplasts containing integrated reporter genes. In: Arabidopsis protocols. Eds. J. Salinas, J.J. Sanchez-Serrano. Totowa, NJ: Humana Press (in press).
  • TRIPATHY B.C., OELMÜLLER R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav., 7: 1621–1633.
  • WANG Z., XIE X., ZHAO J., LIU X., FENG W., WHITE J.C.2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Techn., 46: 4434–4441.
  • XIE Y., LI B., ZHANG Q., ZHANG C. 2012. Effects of nano-silicon dioxide on photosynthetic fluo-rescence characteristics of Indocalamus barbatus McClure. J. Nanjing Forest Univ. (Natural Science Edition), 2: 59–63.
  • ZHAO L.J., PERALTA-VIDEA J.R., REN M.H., VARELA-RAMIREZ A., LI, C.Q., HERNANDEZ-VIEZCASJ.A. 2012. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. J. Chem. Engin., 184: 1–8.
  • ZHAO Y.J., LUO W.H., WANG Y.Q., XU R.J. 1987. Retarding effects of brassinolide on matura-tion and senescence of hypocotyls segments of mung bean seedlings. Acta Physiol. Sinica,13: 129–135.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-668f9bf8-3d05-4497-85c5-bd3d9e14a40e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.