PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 2 |

Tytuł artykułu

Development of SPE/HPLC-DAD to determine residues of selected disinfectant agents in surface water

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our research was to develop a chromatographic method for simultaneous determination of five substances used as disinfectant agents. Biphenyl-2-ol (BPh), chloramine T (ChT), 4-chloro-3-methylphenol (4C3MPh), triclosan (TCS), and triclocarban (TCC) were determined using high-performance liquid chromatography. Chromatographic analyses were carried out on a Develosil RP Aqueous AR-5 RP-30 column (250 mm × 4.6 mm, 5.0 μm particles) with gradient elution of mobile phase including methanol and water, and with a DAD detector. Satisfactory resolution of the determined substances was obtained in 10 minutes. The linearity ranges of the calibration curves (in matrix) of examined disinfectants ranged from 0.10 to 10.00 μg·mL⁻¹ for ChT, 4C3MPh and TCC, and from 0.25 to 10.00 μg·mL⁻¹ for BPh and TCS. The developed method was applied to determine of mentioned compounds in water samples. Water samples were prepared for chromatography analyses by using C18 solid phase extraction discs. The recoveries of analyzed substances ranged from 82 to 101% (except for Chloramine T, which is unstable in water medium). Analyses were operated after extraction of analytes from 3 L of real water samples. The method detection limits in samples of water were: 1.6 ng·mL⁻¹ for BPh, 0.6 ng·mL⁻¹ for ChT, 1.4 ng·mL⁻¹ for 4C3MPh, 1.9 ng·mL⁻¹ for TCS, and 1.0 ng·mL⁻¹ for TCC. This method was successfully applied to analyze examined disinfectants in surface water samples collected from rivers and wastewater in Poland. Four of five compounds were detected in the tested samples in the concentration ranging from 5.05 to 30.36 μg·L⁻¹.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

2

Opis fizyczny

p.269-277,fig.,ref.

Twórcy

  • Department of Analytical Chemistry, Chemical Faculty, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
  • Department of Analytical Chemistry, Chemical Faculty, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland

Bibliografia

  • 1. DEGRAEVE G.M., GEIGER D.I., MAYER J.S., BERGMAN H.I. Acute and Embryo-larval toxicity of phenolic compounds to aquatic biota. Contam. Toxicol. 9, 557, 1980.
  • 2. KAISER K.I.E., PALABRICA V.S. Toxicity assessment of pesticides using the Microtox Test: application to environmental samples. Water Poll. Res. J. Canada 26, 361, 1991.
  • 3. DAVI M.L., GNUDI F. Phenolic compounds in surface water. Water Res. 33, 3213, 1999.
  • 4. MORALES S., CELA R. Highly selective and efficient determination of US Environmental Protection Agency priority phenols employing solid-phase extraction and nonaqueous capillary electrophoresis. J. Chromatogr. A 896, 95, 2000.
  • 5. ORVOS D.R., VERSTEEG D.J., INAUEN J., CAPDEVIELLE M., ROTHENSTEIN A., CUNNINGHAM V. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 21, 1338, 2002.
  • 6. VAN WEZEL A.P. JAGER T. Comparison of two screening level risk assessment approaches for six disinfectants and pharmaceuticals. Chemosphere 47, 1113, 2002.
  • 7. KANETOSHI A., OGAWA H., KATSURA E., KANESHIMA H., MIURA T. Formation of polychlorinated dibenzop-dioxins upon combustion of commercial textile products containing 2,4,4’-trichloro-2’-hydroxydiphenyl ether (Irgasan DP300). J. Chromatogr. 442, 289, 1988.
  • 8. KANETOSHI A., OGAWA H., KATSURA E., KANESHIMA H., MIURA T. Formation of polychlorinated dibenzo-p-dioxin from 2,4,4′-trichloro-2′-hydroxydiphenyl ether (IrgasanR DP300) and its chlorinated derivatives by exposure to sunlight. J. Chromatogr. A 454, 145, 1988.
  • 9. GUO J.-H., LI X.-H., CAO X.-L., LI Y., WANG X.-Z., XU X.-B. Determination of triclosan, triclocarban and methyltriclosan in aqueous samples by dispersive liquid-liquid microextraction combined with rapid liquid chromatography J. Chromatogr. A 1216, 3038, 2009.
  • 10. HALDEN R.U., PAULL D.H. Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ. Sci. Technol. 38, 4849, 2004.
  • 11. TCC Consortium. High Production Volume (HPV) Chemical Challenge Program Data Availability and Screening Level Assessment for Triclocarban; www.epa.gov/hpris/hazchar/101202Triclocarban_HC_ INTERIM_March%202008.pdf.
  • 12. AGÜERA A., FERNÁNDEZ-ALBA A.R., PIEDRA L., MÉZCUA M., GÓMEZ M.J. Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Anal. Chim. Acta 480, 193, 2003.
  • 13. BARTÁK P., CÁP L. Determination of phenols by solidphase microextraction. J. Chromatogr. A 767, 171, 1997.
  • 14. WEIGEL S., BERGER U., JENSEN E., KALLENBORN R., THORESEN H., HUHNERFUSS H. Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56, 583, 2004.
  • 15. TRENHOLM R.A., VANDERFORD B.J., DREWES J.E., SNYDER S.A. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J. Chromatogr. A 1190, 253, 2008.
  • 16. WU J.-L., LAM N.P., MARTENS D., KETTRUP A., CAI Z. Triclosan determination in water related to wastewater treatment. Talanta 72, 1650, 2007.
  • 17. SIMOES N.G., CARDOSO V.V., FERREIRA E., BENOLIEL M.J., ALMEIDA C.M.M. Experimental and statistical validation of SPME-GC-MS analysis of phenol and chlorophenols in raw and treated water. Chemosphere 68, 501, 2007.
  • 18. PENALVER A., POCURULL E., BORRULL F., MARCÉ R.M. Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. J. Chromatogr. A 953, 79, 2002.
  • 19. WISSIACK R., ROSENBERG E. Universal screening method for the determination of US 21 Environmental Protection Agency phenols at the lower ng l-1 level in water samples by on-line solid-phase extraction-highperformance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry within a single run. J. Chromatogr. A 963, 149, 2002.
  • 20. CASTILLO M., PUIG D., BARCELO D. Determination of priority phenolic compounds in water and industrial effluents by polymeric liquid-solid extraction cartridges using automated sample preparation with extraction columns and liquid chromatography. Use of liquid-solid extraction cartridges for stabilization of phenols. J. Chromatogr. A 778, 301, 1997.
  • 21. PUIG D., BARCELÓ D. Determination of phenolic compounds in water and waste water. TrAC, Trends Anal. Chem. 15, 362, 1996.
  • 22. KOLPIN D.W., SKOPEC M., MEYERC M.T., FURLONG E.T., ZAUGG S.D. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci. Total. Environ. 328, 119, 2004.
  • 23. PEDROUZO M., BORRULL F., MARCÉ R.M., POCURULL E. Ultra-high-performance liquid chromatography – tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters. J. Chromatogr. A 1216, 6994, 2009.
  • 24. JÁUREGUI O., GALCERAN M.T. Determination of phenols in water by on-line solid-phase disk extraction and liquid chromatography with electrochemical detection. Anal. Chim. Acta 340, 191, 1997.
  • 25. CHUNG Y., LEE K. Separation and determination of eleven environmental protection agency priority phenols by reversed-phase capillary high-performance liquid chromatography with indirect fluorophotometric detection and solid phase extraction. Microchem. J. 69, 45, 2001.
  • 26. CHENG-YUAN T., GUOR-RONG H. Capillary zone electrophoresis/electrospray mass spectrometry of priority phenols. J. Chromatogr. A 743, 315, 1996.
  • 27. TORIBIO L., DEL NOZAL M.J., BERNAL J.L., JIMÉNEZ J.J., SERNA M.L. Packed column supercritical fluid chromatography coupled with solid-phase extraction for the determination of organic microcontaminants in water. J. Chromatogr. A 823, 163, 1998.
  • 28. BERNAL J.L., NOZAL M.J., TORIBIO L., SERNA M.L., BORRULL F., MARCÉ R.M., POCURULL E. Determination of phenolic compounds in water samples by On-Line Solid-Phase Extraction- Supercritical-Fluid Chromatography with Diode-Array Detection. Chromatographia 46, 295, 1997.
  • 29. ELVIRA-COZAR C., CANO-FAURA P., PÉREZ-ARRIBAS L.V., LEÓN-GONZÁLEZ M.E., POLO-DIÉZ M.L. Trace priority pollutant phenols enrichment from water by Ion Chromatography. Chromatographia 40, 91, 1995.
  • 30. NISHI I., KAWAKAMI T., ONODERA S. Monitoring of triclosan in the surface water of the Tone Canal, Japan. Bull. Environ. Contam. Toxicol. 80, 163, 2008.
  • 31. DAWSON V.K., DAVIS R.A. Liquid chromatographic determination of chloramine-T and its pprimary degradation product, p-toluenesulfonamide, in water. J. AOAC Int. 80, 2, 1997.
  • 32. FERNÁNDEZ MUIFIO M.A., SIMAL GÁNDARA J., SIMAL LOZANO J. Simultaneous determination of pentachlorophenol and carbaryl in water. Chromatographia 32, (516), 238, 1991.
  • 33. LÓPEZ BLANCO M.C., CANCHO GRANDE B., SIMAL GÁNDARA J. Comparison of solid phase extraction and solid phase microextraction for carbofuran analysis in water analyzed by high performance liquid chromatography – photodiode array detection. J. Chromatogr. A 963, (1), 117, 2002.
  • 34. GARCÍA FALCÓN M.S., PEREZ LAMELA C., SIMAL GÁNDARA J. Strategies for the extraction of free and bound polycyclic aromatic hydrocarbons in run-off waters rich in organic matter. Anal. Chim. Acta 508, (2), 177, 2002.
  • 35. GARCÍA FALCÓN M.S., CANCHO GRANDE B., SIMAL GÁNDARA J. Stirring bar sorptive extraction in the determination of PAHs in drinking waters. Water Res. 38, (7), 1679, 2004.
  • 36. GARCÍA FALCÓN M.S., PÉREZ LAMELA M., SIMAL GÁNDARA J. Comparison of strategies for extraction of high molecular weight polycyclic aromatic hydrocarbons from drinking waters. J. Agric. Food Chem. 52, (23), 6897, 2004.
  • 37. LÓPEZ BLANCO M.C., REBOREDA RODRÍGUEZ B., CANCHO GRANDE B., SIMAL GÁNDARA J. Optimization of solid phase extraction (SPE) and solid phase microextraction (SPME) for the determination of α-and β-endosulfan in waters by GC/ECD. J. Chromatogr. A 976, (1-2), 293, 2002.
  • 38. LÓPEZ BLANCO M.C., BLANCO CID S., CANCHO GRANDE B., SIMAL GÁNDARA J. Application of solvent drop microextraction (SDME) and comparison with solid phase microextraction (SPME) and solid phase extraction (SPE) for the determination of α- and β-endosulfan in waters by GC/ECD. J. Chromatogr. A 984, (2), 245, 2003.
  • 39. LÓPEZ BLANCO M.C., GÓMEZ ALVAREZ S., REY GARROTE M., CANCHO GRANDE B., SIMAL GÁNDARA J. Determination of Carbamates and Organophosphorus Pesticides by SDME-GC in Natural Water. Anal. Bioanal. Chem. 383, (4), 557, 2005.
  • 40. LÓPEZ BLANCO M.C., GÓMEZ ÁLVAREZ S., REY GARROTE M., CANCHO GRANDE B., SIMAL GÁNDARA J. Determination of Pesticides by Solid-Phase Extraction followed by Gas Chromatography with Nitrogen-Phosphorous Detection in Natural Water and Comparison with Solvent Drop Microextraction. Anal. Bioanal. Chem. 384, (4), 1002, 2006.
  • 41. RAO V.R.S., VENKAPPAYYA D., ARAVAMUDAN G . Stability characteristics of aqueous chloramine-T solutions. Talanta 17, 770, 1970.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-65b70c83-131d-49e1-bbfa-585abdfa3d11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.