PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |

Tytuł artykułu

Using chemically treated organic recycling materials to enhance freshwater purification

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The greatest source of phosphorus pollution in the freshwater ecosystem is erosion from agricultural areas and point sources. Although this pollution is typically moderated by precipitation and sedimentation, biological and physicochemical methods can be used. The aim of our study was to construct an alternative prototype solution incorporating a filter bed made of suitable recycled phytogenic materials (hemp and harl flax) mixed with chemical compounds (Ca(OH)₂, FeCl₃, and Al₂(SO₄)₃) based on the results of laboratory and field experiments. An 80-90% reduction was noted for deposits with Ca(OH)₂ and Al₂(SO₄)₃ compounds, and 42% for FeCl₃ during laboratory studies. The field studies did not provide such a high reduction of phosphates – only 2% for the Ca(OH)₂ deposit and 49% for the FeCl₃ deposit. This could be attributed to variable physical parameters (pH, temperature and dissolved oxygen) and high negative correlation (r = -0.6296; p = 0.003) with nitrate reduction for the Ca(OH)₂ deposit. However, greater reduction was noted when the phosphate concentration exceeded 1 mg PO₄³⁻ L⁻¹ in field experiments.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

5

Opis fizyczny

p.1847-1855,fig.,ref.

Twórcy

autor
  • Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-264 Lodz, Poland
  • European Regional Centre for Ecohydrology, Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
autor
  • Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-264 Lodz, Poland
  • European Regional Centre for Ecohydrology, Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
  • The Textile Technologies Department in Lodz, Institute for Sustainable Technologies National Research Institute, Hipoteczna 6, 91-335 Lodz, Poland
autor
  • The Textile Technologies Department in Lodz, Institute for Sustainable Technologies National Research Institute, Hipoteczna 6, 91-335 Lodz, Poland
autor
  • Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-264 Lodz, Poland
  • European Regional Centre for Ecohydrology, Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland

Bibliografia

  • 1. KIEDRZYŃSKA E., KIEDZRZYŃSKI M., URBANIAK M., MAGNUSZEWSKI A., SKŁODOWSKI M., WYRWICKA A., ZALEWSKI M. Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecological Engineering 70, 337, 2014.
  • 2. JING L., AO H., HUANG X., XIONG X., WU C., LIU J. Water environment characteristics at Taige Canal-Taihu Lake: a comparative study on interaction between chlorophyll a and environmental variables. Polish Journal of environmental studies, 24 (3), 1031, 2015.
  • 3. ULRICH A.E., MALLEY D.F., WATTS P.D. Lake Winnipeg Basin: Advocacy, challenges and progress for sustainable phosphorus and eutrophication control. Science of the Total Environment, 542 (B), 1030, 2016.
  • 4. DOLMAN A.M., RÜCKER J., PICK F. R., FASTNER J., ROHRLACK T., MISCHKE U., WIEDNER C. Cyanobacteria and cyanotoxins: The influences of nitrogen versus phosphorus. Plos One 7 (6), e38757, 2012.
  • 5. GĄGAŁA I., IZYDORCZYK K., SKOWRON A., KAMECKA-PLASKOTA D., STEFANIAK K., KOKOCIŃSKI M., MANKIEWICZ-BOCZEK J. Appearance if toxigenic cyanobacteria in two Polish lakes dominated by Microcystis aeruginosa and Planktothrix agardii and environmental factor influence. Ecohydrology & Hydrobiology 10 (1), 25, 2010.
  • 6. ZALEWSKI M., Ecohydrology and hydrologic engineering: regulation of hydrology-biota intereactions for sustainability. Journal of Hydrologic Engineering, 20 (1), A4014012, 2015.
  • 7. KIEDRZYŃSKA E., KIEDRZYŃSKI M., URBANIAK M., MAGNUSZEWSKI A., SKŁODOWSKI M., WYRWICKA A., ZALEWSKI M. Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. http://dx.doi.org/10.1016/j. ecoleng.2014.06.010 Ecological Engineering 70, 337, 2014.
  • 8. KĘDZIORA A., NEGUSSIE Y. N., ASRES T. M., ZALEWSKI M. Shaping of an agricultural landscape to increase water and nutrient retention. Ecohydrology & Hydrobiology 11 (3-4), 205, 2011.
  • 9. LU S.Y., WU F.C., LU Y.F., XIANG C.S., ZHANG P.Y., JIN C.X. Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering 35, 402, 2009.
  • 10. VOHLA C., KÕIV M., BAVOR J., CHAZARENC F., MANDER Ü. Filter material for phosphorus removal from wastewater in treatment wetlands – A review. Ecological Engineering 37, 70, 2011.
  • 11. GU D., ZHU X., VONGSAY T., HUANG M., SONG LI., HE Y. Phosphorus and Nitrogen Removal Using Novel Porous Bricks Incorporated with Wastes and Minerals. Polish Journal of Environmental Studies 22 (5), 1349, 2013.
  • 12. KLIMESKI A., CHARDON W.J., TURTOLA E., UUSITALO R. Potential and limitations of phosphate retention media in water protection: A process-based review of laboratory and field-scale tests. Agricultural and Food Science, 21 (3), 206, 2012.
  • 13. KLIMESKI A., UUSITALO R., TURTOLA E. Screening of Ca-and Fe-rich materials for their applicability as phosphateretaining filters. Ecological Engineering, 68, 143, 2014.
  • 14. PENN C., MCGRATH J., BOWEN J., WILSON S. Phosphorus removal structures: A management option for legacy phosphorus. Journal of Soil and Water Conservation, 69 (2), 51A, 2014.
  • 15. WANG Y., TNG K. H., WU H., LESLIE G., WAITE T.D. Removal of phosphorus from wastewaters using ferrous salts – A pilot scale membrane bioreactor study. Water Research, 54, 140, 2014.
  • 16. DITTRICH M., GABRIEL O., RUTZEN C., KOSCHEL R. Lake restoration by hypolimnetic Ca(OH)2 treatment: Impact on phosphorus sedimentation and release from sediment. Science of the Total Environment 409, 1504, 2011.
  • 17. MEIS S., SPEARS B. M., MABERLY S. C., O’MALLEY M. B., PERKINS R. G. Sediment amendment with Phospholock in Clatto Reservoir (Dundee. UK): Investigating changes in sediment elemental composition and phosphorus fraction. Journal of Environment Management 93 (1), 185, 2012.
  • 18. GOŁDYN R., PODSIADŁOWSKI S., DONDAJEWSKA R., KOZAK A. The sustainable restoration of lakes – towards the challenges of the Water Framework Directive. Ecohydrology & Hydrobiology 14 (1), 68, 2014.
  • 19. HUKARI S., HERMANN L., NÄTTROP A. From wastewater to fertilisers – Technical overview and critical review of European legislation governing phosphorus recycling. Science of the Total Environment, 542, 1127, 2016.
  • 20. HELCOM. Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region. Helsinki Commission. Executive Summary. Baltic Sea Environment Proceeding. No. 115A. 2009.
  • 21. CUCARELLA V., RENMAN G. Phophorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments – a comparative study. Journal of Environmental Quality 38, 381, 2009.
  • 22. SCHINDLER D.W. The dilemma of controlling cultural eutrophication of lakes. Proc Biol Sci 279, 4322, 2012.
  • 23. BERNACKA J., KURBIEL J., PAWŁOWSKA L. Usuwanie związków biogennych ze ścieków miejskich (Removal of nutrients from municipal sewage). Institute of Environmental Protection. Warsaw. 1995 [In Polish].
  • 24. GOŁDYN R., DONDAJEWSKA R., KOWALCZEWSKA-MADURA K. Wpływ nowych preparatów chemicznych na ograniczenie wydzielania fosforu z osadów dennych (The influence of new chemicals on the reduction of ortophosphorus release from bottom sediments) In: Malina G. (Ed.) Rekultywacja i Rewitalizacja Terenów Zdegradowanych (Reclamation and Revitalization of Demoted Areas). PZITS. Poznan. 53, 2010 [In Polish].
  • 25. DUNALSKA J.A., GROCHOWSKA J., WIŚNIEWSKI G., Napiórkowska-Krzebietke J. Can we restore badly degraded urban lakes? Ecological Engineering 82, 432, 2015.
  • 26. WATER FRAMEWORK DIRECTIVE. (Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy). OJL 327. 22 December 2000. 1, 2000.
  • 27. SØNDERGAARD M., JENSEN J., JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506 -509, 135, 2003.
  • 28. DE-BASHAN L.E., BASHAN Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research 38, 4222, 2004.
  • 29. CUCARELLA V., ZALESKI T., MAZUREK R., RENMAN G. Fertilizer Potential of Calcium-Rich Substrates Used for Phosphorus Removal from Wastewater. Polish Journal of Environmental Studies 16 (6), 817, 2007.
  • 30. HOSNI K., BEN MOSSUA S., CHACI A., BEN AMOR M. The removal of PO 43- by calcium hydroxide from synthetic wastewater: optimization of operating conditions. Desalination 223, 337, 2008.
  • 31. ASHEKUZZAMAN S. M., JIAN J-Q. Study on the sorption–desorption–regeneration performance of Ca-. Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Enginneering Journal 246, 97, 2014.
  • 32. FERNÁNDEZ-NAVA Y., MARAÑÓN E., SOONS J., CASTRILLÓN L. Denitrification of wastewater containing high nitrate and calcium concentration. Bioresource Technology 99 (17), 7976, 2008.
  • 33. PENG J., WANG B., SONG Y., YUAN P., LIU Z. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond. Ecological Engineering 31, 92, 2007.
  • 34. ZHANG Z., WANG Y., LESLIE G.L., WAITE T.D. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research 69, 210, 2015.
  • 35. ZHANG M., ZHENG K., JIN J., YU X., QIU L., DING S., LU H., CAI J., ZHENG P. Effects of Fe(II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Separation and Purification Technology 118, 801, 2013.
  • 36. AHLGREN J., REITZEL K., DE BRABANDERE H., GOGOLL A., RYDIN E. Release of organic P forms from lake sediments. Water Research 45, 565, 2011.
  • 37. REITZEL K., HANSEN J., ANDERSEN F., HANSEN K. S., JENSEN H. S. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environmental Science & Technology 39 (11), 4134, 2005.
  • 38. RODRIGUEZ I.R., AMRHEIN C., ANDERSON M.A. Reducing dissolved phosphorus to the Salton Sea with aluminum sulfate. Hydrobiologia 604 (1), 37, 2005.
  • 39. XIE J., LIN Y., LI C., WU D., KONG H. Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technology 269, 351, 2015.
  • 40. CHENG W.P., CHI F.H., YU R.F. Effect of phosphate on removal of humic substances by aluminum sulfate coagulant. Journal of Colloid and Interface Science 272, 153, 2004.
  • 41. ZALEWSKI M. Ecohydrology for implementation of the EU water framework directive. Proceedings of the ICE-Water Management 164 (8), 375, 2010.
  • 42. GĄGAŁA I., IZYDORCZYK K., JURCZAK T., PAWEŁCZYK J., DZIADEK J., WOJTAL-FRANKIEWICZ A., JÓŹWIK A., JASKULSKA A., MANKIEWICZ-BOCZEK J. Role of Environmental Factors and Toxic Genotypes in the Regulation of Microcystins – Producing Cyanobacterial Blooms. Microb. Ecol. 67, 465, 2014.
  • 43. SZULC B., JURCZAK T., SZULC K., KACZKOWSKI Z. The influence of the ecohydrological rehabilitation in the cascade of the Arturówek reservoirs in Łódź (Central Poland) on the cyanobacterial and algae blooming. Oceanological and Hydrological Studies 44 (2), 236, 2015

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-654a33a4-99c3-4242-9b6f-269a8c1a7668
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.