PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 3 |

Tytuł artykułu

Effect of long storage and soil type on the actual denitrification and denitrification capacity to N2O formation

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The actual denitrification to N 2 O and denitri- fication capacity to N 2 O after flooding of different soil samples stored for over 25 years in air-dry conditions and fresh, air dried samples were compared in our study. Zero N 2 O release was ob- served from the stored soils but the fresh soil samples had very low actual denitrification to N 2 O. NO 3 - addition significantly increased the amount of N 2 O (denitrification capacity to N 2 O) released after flooding, which depended on the length of storage and type of soils and was much higher in stored soils. Prolonged exposure of the soils to drought conditions caused a greater decrease in the Eh value compared with the fresh soil. The total cumulative release of N 2 O from the stored and fresh soils was correlated with the reduced NO 3 - and organic C content in soils enriched with NO 3 - . Some soils showed the capability of N 2 O consumption. CO 2 release depended on the length of storage and type of soils under flooding after pro- longed drought. On average, CO 2 release was higher from the stored rather than fresh soils. The organic C content in the stored soils was generally lower than in the fresh soils, probably due to the storage effect. The cumulative CO 2 release from the stored soils was well correlated with the organic C while no correlation was observed for the fresh soil samples.

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.371-381,fig.,ref.

Twórcy

  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Department of Geography, Swansea University, Swansea SA2 0NA, U.K.

Bibliografia

  • Almasri M.N. and Kaluarachchi J.J., 2004. Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. Hydrol., 295, 225-245.
  • Beare M.H., Gregorich E.G., and St-Georges P., 2009. Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem., 41, 611-621.
  • Bieganowski A., Ryżak M., and Witkowska-Walczak B., 2010.Determination of soil aggregate disintegration dynamic Rusing laser diffraction. Clay Minerals, 45, 23-34.
  • Bieganowski A., Witkowska-Walczak B., Gliński J., Sokołowska Z., Sławiński C., Brzezińska M., and Włodarczyk T., 2013. Database of Polish arable mineral soils: a review. Int. Agrophys., 27, 335-350.
  • Birch H.F., 1958. The effect of soil drying on humus decomposition and nitrogen. Plant Soil, 10, 9-31.
  • Brzezińska M., Urbanek E., Szarlip P., Włodarczyk T., Bułak P, Walkiewicz A., and Rafalski P., 2014. Methanogenic potential of archived soils. Carphatian J. Earth Environ. Sci., 9, 79-90.
  • Burford J.R. and Bremner J.M., 1975. Relationships between the denitrification capacities of soils and total water soluble and readily decomposable soil organic matter. Soil Biol. Biochem., 7, 389-394.
  • DeAngelis K.M., Silver W.L., Thompson A.W., and Firestone M.K., 2010. Microbial communities acclimate to recurring changes in soil redox potential status. Environ. Microbiol., 12, 3137-3149.
  • De Nobili M., Contin M., and Brookes P.C., 2006. Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years. Soil Biol. Biochem., 38, 2871-2881.
  • Dodla S.K., Wang J.J., DeLaune R.D., and Cook R.L., 2008. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Science of the Total Environment, 407, 471-480.
  • Gliński J. and Stępniewski W., 1985. Soil Aeration and its Role for Plants. CRC Press, Boca Raton, FL, USA.
  • Hanke A. and Strous M., 2010. Climate, fertilization, and the nitrogen cycle. J. Cosmology, 8, 1838-1845.
  • Harrison-Kirk T., Beare M.H., Meenken E.D., and Condron L.M., 2013. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biol. Biochem., 57, 43-55.
  • Hayatsu M., Tago K., and Saito M., 2008. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Scie. Plant Nutr., 54, 33-45.
  • Husson O., 2013. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil, 362, 389-417.
  • IPCC, 2007. Summary for policy makers. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The physical science basis. Contribution of working group I to the 4th Assessment Rep. (AR4) of Intergovernmental panel on climate change. Cambridge University Press, UK.
  • Kraft B., Strous M., and Tegetmeyer H.E., 2011. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J. Biotechnol., 155, 104-117.
  • Kroze C., Mossier A., and Bouwman L., 1999. Closing the global N2O budget: a retrospective analysis. Global Biogeochem. Cycle., 13, 1-8.
  • Oliveira T.S.., Costa L.M.., and Schaefer C.E., 2005. Waterdispersible clay after wetting and drying cycles in four Brazilian oxisols. Soil Till. Res., 83, 260-269.
  • Pastorelli R., Landi S., Trabelsi D., Piccolo R., Mengoni A., Bazzicalupo M., and Pagliai M., 2011. Effects of soil management on structure and activity of denitrifying bacterial communities. Applied Soil Ecol., 49, 46-58.
  • Peterson M.E.,Curtin D., Thomas S.,Clough T.J., and Meenken E.D., 2013. Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil. Soil Biol. Biochem., 61, 96-104.
  • Ravishankara A.R., Daniel J.S., and Portmann R.W., 2009. Nitrous Oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123-125. Rivett M.O., Buss S.R., Morgan P., Smith J.W.N., and Bemment Ch.D., 2008. Nitrate attenuation in groundwater:Areview of bio-geochemical controlling processes. Water Res., 42, 4215-4232.
  • Ryżak M. and Bieganowski A., 2011. Methodological aspects of determining soil particle-size distribution using the laserdiffraction method. J. Plant Nutr. Soil Sci., 174, 624-633.
  • Senbayram M., Chen R., Budai A., Bakken L., and Dittert K., 2012.N2Oemission and theN2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems Environ., 147, 4-12.
  • Sochan A., Bieganowski A., Ryżak M., Dobrowolski R., and Bartmiński P., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys., 26, 99-102.
  • Šimek M., Elhottová D., Klimeš F., and Hopkins D.W., 2004. Emissions of N2O and CO2 denitrification measurements and soil properties in red clover and ryegrass stands. Soil Biol. Biochem., 36, 9-21.
  • Włodarczyk T., 2000. Some of aspects of dehydrogenase activity in soils. Int. Agrophysics, 14, 341-354.
  • Włodarczyk T., Stępniewski W., and Brzezińska M., 2005. Nitrous oxide production and consumption in Calcaric Regosols as related to soil redox and texture. Int. Agrophysics, 19, 263-271.
  • Włodarczyk T., Stępniewski W., Brzezińska M., and Majewska U., 2011. Various textured soil as nitrous oxide emitter and consumer. Int. Agrophys., 25, 287-297.
  • Włodarczyk T., Stępniewski W., Brzezińska M., and Stępniewska Z., 2004. Nitrate stability in loess soils under anaerobic conditions - laboratory studies. J. Plant Nutr. Soil Sci., 167, 693-700.
  • Worrall F. and Burt T.P., 2008. The effect of severe drought on the dissolved organic carbon (DOC) concentration and flux from British rivers. Journal of Hydrology, 361, 262-274.
  • Wu J. and Brookes P.C., 2005. The proportional mineralisation of microbial biomass and organic matter caused by airdrying and rewetting of a grassland soil. Soil Biol. Biochem., 37, 507-515.
  • Xiang S.R., Doyle A., Holden P.A., and Schimel J.P., 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem., 40, 2281-2289.
  • Yu K., Faulkner S.P., and Patrick Jr.W.H., 2006. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest. Chemosphere, 62, 905-914.
  • Yu K.W., Wang Z.P., Vermoesen A., Patrick Jr W.H., and Van Cleemput O., 2001. Nitrous oxide and methane emissions from different soil suspensions: effect of soil redox status. Biol. Fertility Soils, 34, 25-30.
  • Zhang J., Cai Z., and Zhu T., 2011. N2O production pathways in the subtropical acid forest soils in China. Environ. Res., 111, 643-649.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-65195522-afd9-4e20-b0d9-bc3306cfa8bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.