PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Return period for urban rainwater drainage networks based on the lowest total social investment method: a case study in Tianjin, China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Waterlogging is related to rainfall intensity as well as drainage network design. In previous studies, rainfall intensity was dominantly considered, while the design return period with the lowest total social investment of drainage networks was generally neglected. In this study, Guangkai Street in Tianjin in northern China was selected as a case study to determine the optimal design return period of drainage networks. According to the drainage networks for different design return periods, the depth of waterlogging was simulated based on the FloodArea model under the conditions of the rainfall exceeding the design return period. Furthermore, traffic losses due to waterlogging were determined by using the traffic loss model. When the sum of traffic losses and drainage network investment is smallest (i.e., the lowest total social investment), the corresponding return period is considered as the optimal design return period of drainage networks. By comparing the simulated depths of waterlogging and observations of 17 waterlogging monitoring points, we found that the FloodArea model has efficient simulation in most areas. Accordingly, the FloodArea model was used to simulate the depths of waterlogging with different return periods in Guangkai Street. The results show that the total social investment, including traffic losses and initial investment of drainage networks, is the lowest with the return period of the drainage networks in the selected area being designed as 5 years. This suggests that the design return period of the drainage networks in Guangkai Street should be upgraded to 5 years. The approach in this study is based on high-precision simulation (1 m GIS data) and actual waterlogging depth to ensure the accuracy of simulation. The optimal design return period is calculated in combination with traffic losses and initial investment of drainage networks, providing reference for the design of drainage networks in specific areas.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3993-3999,fig.,ref.

Twórcy

autor
  • Tianjin Climate Center, Tianjin, China
autor
  • Tianjin Climate Center, Tianjin, China
autor
  • Tianjin Climate Center, Tianjin, China
autor
  • Tianjin Climate Center, Tianjin, China

Bibliografia

  • 1. MICHAELS P.J., KNAPPENBERGER P.C., FRAUENFELD O.W., DAVIS R.E. Trends in precipitation on the wettest days of the year across the contiguous USA. International Journal of Climatology, 24 (15), 1873, 2004.
  • 2. ROY S.S., ROBERT C., BALLING J.R. Trends in extreme daily precipitation indices in India. International Journal of Climatology, 24 (4), 457, 2004.
  • 3. JUNG I.W., BAE D.H., KIM G. Recent trends of mean and extreme precipitation in Korea. International Journal of Climatology, 31 (3), 359, 2011.
  • 4. CHOI W., TAREGHIAN R., CHOI J., HWANG C. Geographically heterogeneous temporal trends of extreme precipitation in Wisconsin, USA during 1950-2006. International Journal of Climatology, 34 (9), 2841, 2014.
  • 5. SUPARI S., TANGANG F., JUNENG L., ALDRIAN E. Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology, 37 (4), 1979, 2017.
  • 6. WU Y.J., WU S.Y., WEN J.H., XU M., TAN J.G. Changing characteristics of precipitation in China during 1960-2012. International Journal of Climatology, 36 (3), 1387, 2016.
  • 7. VILLARINI G., SMITH J.A., BAECK M.L., STURDEVANT-REES P., KRAJEWSKI W.F. Radar analyses of extreme rainfall and flooding in urban drainage basins. Journal of Hydrology, 381 (3), 266, 2010.
  • 8. SUN J.H., ZHAO S.X., FU S.M., WANG H.J., ZHENG L.L. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012. Chinese Journal of Atmospheric Sciences, 37 (3), 705, 2013 [In Chinese].
  • 9. LIU H.R., LI C.Y. Impacts of the dry intrusion on Ji’nan torrential rain occurring on 18 July 2007. Chinese Journal of Atmospheric Sciences, 34 (2), 374, 2010 [In Chinese].
  • 10. LI D.M., ZHANG H.P., LI B.F. Basic theory and mathematical modeling of urban rainstorm water logging. Journal of Hydrodynamics (Ser. B), 1, 17, 2004.
  • 11. XIE Y.Y., HAN S.Q., YOU L.H., WANG Y., YAN C.L. Risk analysis of urban rainfall waterlogging in Tianjin City. Scientia meteorologica Sinica, 24 (3), 342, 2004 [In Chinese].
  • 12. SU M.R., ZHENG Y., HAO Y., CHEN Q.H., CHEN S.H., CHEN Z.Y., XIE H. The influence of landscape pattern on the risk of urban water-logging and flood disaster. Ecological Indicators, 92, 133, 2018.
  • 13. FORTUNATO A., OLIVERI E., MAZZOLA M.R. Selection of the optimal design rainfall return period of urban drainage systems. Procedia Engineering, 89 (2004), 742, 2014.
  • 14. WU M.Z., XU S.R. Study on design return period of rainwater system in Changsha based on lowest social total investment. Water Resources and Power, 34 (1), 98, 2016 [In Chinese].
  • 15. PECK A., PRODANOVIC P., SIMONOVIC S.P.P. Rainfall intensity Duration Frequency Curves under climate change: city of London, Ontario, Canada. Canadian Water Resources Journal, 37 (3), 177, 2012.
  • 16. CDOWE. Code for design of outdoor wastewater engineering. 2014 [In Chinese].
  • 17. TGEIDFCDRP. Technical guidelines for establishment of Intensity-Duration-Frequency Curve and design rainstorm profile. 2014 [In Chinese].
  • 18. XUE F.C., HUANG M.M., WANG W., ZOU L. Numerical simulation of urban waterlogging based on FloodArea model. Advances in Meteorology, 2016 (1), 1, 2016.
  • 19. TYRNA B., ASSMANN A., FRITSCH K., JOHANN G. Large scale high resolution pluvial flood hazard mapping using the raster-based hydrodynamic 2D model FloodAreaHPC. Journal of Flood Risk Management, 11 (S2), S1024, 2018.
  • 20. FloodArea and FloodAreaHPC – ArcGIS – extension for calculating flooded areas (User Manual Floodarea10.0), 2011.
  • 21. OLIVERI E., SANTORO M. Estimation of urban structural flood damages: the case study of Palermo. Urban Water, 2 (3), 223, 2000.
  • 22. FRENI G., LA L.G., NOTARO V. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. Water Science and Technology, 61 (12), 2979, 2010.
  • 23. DU L., YANG X.K. An Exploration of influence of accumulated rainwater on urban traffic. 11th International Conference of Chinese Transportation Professionals, 187, 2011.
  • 24. XIONG M.M., XU S., LI M.C., YANG Y.J., REN Y., CAO J.F. Characteristics of hourly precipitation in Tianjin. Torrential Rain and Disasters, 35 (1), 84, 2016 [In Chinese].
  • 25. ZHOU B.T., WEN Q.H., XU Y., SONG L.C., ZHANG X.B. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. Journal of Climate, 27 (17), 6591, 2014.
  • 26. CHEN H.P., SUN J.Q., LI H.X. Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmospheric and Oceanic Science Letters, 10 (6), 403, 2017.
  • 27. MADSEN H., ARNBJERG-NIELSEN K., MIKKELSEN P.S. Update of regional Intensity-Duration-Frequency Curves in Denmark: tendency towards increased storm intensities. Atmospheric Research, 92 (3), 343, 2009.
  • 28. WILLEMS P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 496(4), 166, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-64fd85a4-a658-4a07-91eb-97970e380f80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.