PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 17 | 1[188] |

Tytuł artykułu

Glony - produkcja biomasy

Treść / Zawartość

Warianty tytułu

EN
Algae - biomass production

Języki publikacji

PL

Abstrakty

PL
Glony mogą służyć do produkcji biomasy, którą następnie można wykorzystywać na wiele sposobów. Biomasa może posłużyć do produkcji biodiesla, biogazu, energii elektrycznej, a także cieplnej. Ze względu na rosnące ceny ropy naftowej, a także wzrost zanieczyszczenia środowiska, prowadzone są co raz szersze badania w zakresie wykorzystania biomasy, jako źródła energii bioodnawialnej. Obecnie testowane są liczne systemy namnażania glonów, które często charakteryzują się różną wydajnością produkcji, przy czym wydajność zależy nie tylko od konstrukcji danego fotobioreaktora, lecz również od składników pokarmowych dostarczanych podczas namnażania, natężenia światła, stężenia CO2 i temperatury.
EN
Algae can be utilised for biomass production, which can be taken advantage of in many ways. Biomass can be used for biodiesel, biogas, electricity or heat production. For the reason of increasing prices of crude oil and escalation of environment pollution, scientific investigations in a wide range of using biomass as a renewable energy source are conducted. Many reproduction systems of algae, which are often characterised by different rates of production yield, are tested for the present. Their productivity depends not only on the design of a given photobioreactor, but also on nutrients supplied during the reproduction, luminous intensity, CO2 concentration and temperature.

Wydawca

-

Czasopismo

Rocznik

Tom

17

Numer

Opis fizyczny

s.105-116,rys.,tab.,wykr.,bibliogr.

Twórcy

autor
  • Instytut Agrofizyki im.B.Dobrzańskiego, Polska Akademia Nauk, ul.Doświadczalna 4, 20-290 Lublin
  • Instytut Agrofizyki im.B.Dobrzańskiego, Polska Akademia Nauk, ul.Doświadczalna 4, 20-290 Lublin

Bibliografia

  • Benemann J.R., 1997. CO2 mitigation with microalgal systems. Energy Convers. Manage, 38, 475-479.
  • Borowitzka M.A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-321.
  • Boussiba S., Sandbank E., Shelef G., Cohen Z., Vonshak A., Ben- Amotz A., Arad S., Richmond A., 1988. Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture 72, 247-253.
  • Burlew 1953. Algal Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington, Washington, DC, 357.
  • Camacho Rubio F., Acien Fernandez F.G., Garcia Camacho F., Sanchez Perez J.A., Molina Grima E., 1999. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactor for microalgal culture. Biotechnol. Bioeng., 62, 71-86.
  • Camacho Rubio F., Acien Fernandez F.G., Sanchez Perez J.A., Garcıa Camacho F., Molina Chisti Y., 2002. Growth and characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb. Technol., 31, 1015-1023.
  • Carvalho A.P., Meireles L.A., Malcata F.X., 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog., 22, 1490- 1506.
  • Chae S.R., Hwang E.J., Shin H.S., 2006. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor. Bioresource Technol., 97, 322-329.
  • Chetsumon A., Maeda I., Umeda F., Yagi K., Miura Y., Mizoguchi T., 1994. Antibiotic production by the immobilized cyanobacterium, Scytonema sp. TISTR 8208, in a seaweed-type photobioreactor. J. Appl. Phycol., 6, 539–543.
  • Chaumont D., Thepenier C., Gudin C., 1988. Scaling up a tubular photobioreactor for continuous culture of Porphyridium cruentum – from laboratory to pilot plant. In: Stadler, T., Morillon, J.,
  • Verdus, M.S., Karamanos, W., Morvan, H., Christiaen, D. (Eds.), Algal Biotechnology. Elsevier Applied Science, London, 199-208.
  • Chisti Y. Biodiesel from microalgae, 2007. Biotechnol. Adv., 25, 294-306.
  • Choi S.L., Suh I.S., Lee C.G., 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb.Technol., 33, 403-409.
  • Dallaire V., Lessard P., Vandenberg G., de la Nou¨e J., 2007. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresource Technol., 98, 1433-1439.
  • Fogg G. E., Thake B., 1987. Algal cultures and phytoplankton ecology. University of Wisconsin Press.
  • Frąc M., Jezierska-Tys S., Tys J., 2009. Algi – energia jutra (biomasa, biodiesel). Acta Agrophysica, 13(3), 627-638.
  • Garcıa-Malea Lopez, M.C., Del Rıo Sanchez, E., Casas Lopez, J.L., Acien Fernandez, F.G., Fernandez Sevilla, J.M., Rivas, J., Guerrero, M.G., Molina Grima, 2006. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J. Biotechnol., 123, 329-342.
  • Hase R., Oikawa H., Sasao C., Morita M., Watanabe Y., 2000. Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J. Biosci. Bioeng., 89, 157-163.
  • Hoekema S., Bijmans M., Janssen M., Tramper J., Wijffels R.H., 2002. A pneumatically agitated flat-panel photobioreactor with gas recirculation: anaerobic photoheterotrophic cultivation of a purple nonsulfur bacterium. Int. J. Hydro. Energy, 27, 1331-1338.
  • Hu Q., Guterman H., Richmond A., 1996. A flat inclined modular photobioreactor for outdoor mass cultivation of phototrophs. Biotechnol. Bioeng., 51, 51-60.
  • Kaewpintong K., Shotipruk A., Powtongsook S., Pavasant P., 2007. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technol., 98, 288-295.
  • Karthikeyan, S., Balasubramanian, R., Iyer, C.S.P., 2007. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresource Technol., 98, 452-455.
  • Lee Y.K., Low C.S., 1991. Effect of photobioreactor inclination on the biomassproductivity of an outdoor algal culture. Biotechnol. Bioeng., 38, 995-1000.
  • Lodeiro P., Cordero B., Barriada J.L., Herrero R., Sastre de Vincente M.E., 2005. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresource Technol., 96, 1796-1803.
  • Lorenz R.T., Cysewski G.R., 2003. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18, 160-167.
  • Milner H.W., 1953. Rocking tray. In: Burlew, J.S. (Ed.), Algal Culture from Laboratory to Pilot Plant. Carnegie Institution, Washington, DC, 600, 108.
  • Molina Grima E., Acien Fernandez F.G., Garcia Camacho F., Chisti Y., 1999. Photobioreactors: light regime, mass transfer and scaleup. J. Biotechnol., 70, 231-247.
  • Molina Grima E., Fernandez J., Acien Fernandez F.G., Chisti Y., 2001. Tubular photobioreactor design for algal cultures. J. Biotechnol., 92, 113-131.
  • Oleszkiewicz J., 1999. Eksploatacja składowiska odpadów. Poradnik decydenta. LEM PROJEKT s.c., Kraków.
  • Oswald W.J., Golueke C.G., 1960. Biological transformation of solar energy. Adv. Appl. Microbiol., 2, 223-262.
  • Pirt S.J., Lee Y.K., Walach M.R., Pirt M.W., Balyuzi H.H.M., Bazin M.J., 1983. A tubular photobioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol., 33B, 35-38.
  • Pulz O., 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol., 57, 287-293.
  • Ramos de Ortega, A., Roux, J.C., 1986. Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10, 141-156.
  • Richmond A., 2000. Microalgal biotechnology at the turn of the millennium: a personal view. J. Appl. Phycol. 12, 441–451.
  • Samson R., Leduy A., 1985. Multistage continuous cultivation of bluegreen alga Spirulina maxima in the flat tank photobioreactors. Can. J. Chem. Eng., 63, 105-112.
  • Sanchez Miron A., Contreras Gomez A., Garcia Camacho F., Molina Grima E., Chisti Y., 1999 Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J. Biotechnol.,70, 249-270
  • Sanchez Miron A., Ceron Garcia M.C., Contreras Gomez A., Garcia Camacho F., Molina Grima E., Chisti Y., 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J., 16, 287- 297
  • Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B., 2008 Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res., 1, 20-43.
  • Simoons F., 1991. Seaweeds and Other Algae. Food in China: A Cultural and Historical Inquiry. CRC Press. 6, 179-190.
  • Sung K.D., Lee J.S., Shin C.S., Park S.C., Choi M.J., 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technol., 68, 269-273. The American Heritage Dictionary of the English Language: 4th ed, 2000.
  • Tredici M.R., Materassi R., 1992. From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. J. Appl. Phycol., 4, 221-231.
  • Ugwu C.U., Ogbonna J.C., Tanaka H., 2002. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl. Microbiol. Biotechnol., 58, 600-607.
  • Ugwu C.U., Aoyagi H., Uchiyama H., 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021-4028.
  • Vega-Estrada J., Montes-Horcasitas M.C., Domini´gues-Bocanegra A.R., Canizares-Villanueva R.O., 2005. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl. Microbiol. Biotechnol., 68, 31-35.
  • Vonshak A., Torzillo G., 2004. Environmental stress physiology. In: Richmond, A. (Ed.), Handbook of Microalgal Culture. Blackwell Publishers, Oxford, 57-82.
  • Wilde E.W., Benemann J.R., 1993. Bioremoval of heavy metals by the use microalgae. Biotechnol. Adv., 11, 781-812
  • Wilk-Woźniak E., 2003. Różnorodność glonów planktonowych w wodach Górnego Śląska. Przyroda Górnego Śląska, Centrum Dziedzictwa Przyrody Górnego Śląska z Katowic, 34, 10-12.
  • Zhang K., Kurano N., Miyachi S., 2002. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioproc. Biosys. Bioeng., 25, 97-101.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6470d5de-7e15-43fc-a185-4cb981e14fc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.