PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 76 |

Tytuł artykułu

Postglacial migration dynamics helps to explain current scattered distribution of Taxus baccata

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Taxus baccata L. has a scattered distribution and the decline of yew woodlands is observed across the entire species range. Passively protected populations in the central and northern part of their distribution are declining without human intervention. However, the establishment of new yew populations is observed in habitats that have been significantly transformed by humans. The following question need to be answered: why do yews find better in environmental conditions that have been strongly modified by humans compared to natural systems? The Quaternary history might be the key to understand the current yew situation. As suggested by palaeobotanical studies, pollen of T. baccata was observed at optima of the interglacials, but in subsequent periods, it has been displaced by that of other shade-tolerant species. Pollen diagrams indicate that after the last glaciation, the yew did not appear earlier than other shade-tolerant species and did not have the opportunity to become common in occurrence, as in previous interglacial periods. As a result, yews occur only as relict populations within environmental islands where the competition with other shade-tolerant species is low. The negative human impact on yew is well-documented, but limitations resulting from the biology of this species are also very important. T. baccata is a species whose current scattered distribution may explain the Quaternary history. Yew situation is better in artificial conditions because people reduce competition from other trees species and deer pressure. Possible positive impact of human on yew distribution in the past is also discussed. The current biological condition of this species suggests the need for active protection.

Wydawca

-

Czasopismo

Rocznik

Tom

76

Opis fizyczny

p.81-89,ref.

Twórcy

autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • , Faculty of Biological Sciences, University of Zielona Gora, Prof.Z.Szafrana 1, 65-516 Zielona Gora, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • W.Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland

Bibliografia

  • Averdieck F (1971) Zur postglacialen Geschichte der Eibe (Taxus baccata L.) in Nordwest-deutschland. Flora (Germany) 160: 28–42.
  • Beaulieu JL, Andrieu-Ponel V, Reille M, Grüger E, Tzedakis C & Svobodova H (2001) An attempt at correlation between the Velay pollen sequence and the Middle Pleistocene stratigraphy from central Europe. Quaternary Science Reviews 20: 1593–1602. doi:10.1016/S0277-3791(01)00027-0.
  • Bobiec A, Kuijper DPJ, Niklasson M, Romankiewicz A & Solecka K (2011) Oak (Quercus robur L.) regeneration in early successional woodlands grazed by wild ungulates in the absence of livestock. Forest Ecology and Management 262: 780–790. doi:10.1016/j.foreco.2011.05.012.
  • Breton C, Tersac M & Bervillè A (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. Journal of Biogeography 33: 1916–1928. doi:10.1111/j.1365-2699.2006.01544.x.
  • Burgarella C, Navascués M, Zabal-Aguirre M, Berganzo E, Riba M, Mayol M, Vendramin GG & González-Martínez SC (2012) Recent population decline and selection shape diversity of taxol-related genes: demography and selection in taxol genes. Molecular Ecology 21: 3006–3021. doi:10.1111/j.1365-294X.2012.05532.x.
  • Chybicki IJ, Oleksa A & Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107: 589–600. doi:10.1038/hdy.2011.51.
  • Chybicki IJ, Oleksa A & Kowalkowska K (2012) Variable rates of random genetic drift in protected populations of English yew: implications for gene pool conservation. Conservation Genetics 13: 899–911. doi:10.1007/s10592-012-0339-9.
  • Czartoryski A (1978) Protection and conservation of yew: The Yew – Taxus baccata L. (ed. by S Białobok) Department of Agriculture and the National Science Foundation, Washington, Warsaw, Poland, pp. 116–138.
  • Deforce K & Bastiaens J (2007) The holocene history of Taxus baccata (Yew) in Belgium and neighbouring regions. Belgian Journal of Botany 140: 222–237.
  • Dering M, Misiorny A, Lewandowski A & Korczyk A (2012) Genetic and historical studies on the origin of Norway spruce in Białowieża Primeval Forest in Poland. European Journal of Forest Research 131: 381–387.
  • Devaney JL, Jansen MAK & Whelan PM (2014) Spatial patterns of natural regeneration in stands of English yew (Taxus baccata L.); Negative neighbourhood effects. Forest Ecology and Management 321: 52–60. doi:10.1016/j.foreco.2013.06.060.
  • Devaney JL, Whelan PM & Jansen MAK (2015) Light responses of yew (Taxus baccata L.); does size matter? Trees 29: 109–118. doi:10.1007/s00468-014-1095-x.
  • Dhar A, Ruprecht H, Klumpp R & Vacik H (2007) Comparison of ecological condition and conservation status of English yew population in two Austrian gene conservation forests. Journal of Forest Research 18: 181–186. doi:10.1007/s11676-007-0037-5.
  • Dhar A, Ruprecht H & Vacik H (2008) Population viability risk management (PVRM) for in situ management of endangered tree species – A case study on a Taxus baccata L. population. Forest Ecology and Management 255: 2835–2845. doi:10.1016/j.foreco.2008.01.059.
  • Dowling LA & Coxon P (2001) Current understanding of Pleistocene temperate stages in Ireland. Quaternary Science Reviews 20: 1631–1642.
  • Dubreuil M, Sebastiani F, Mayol M, González-Martínez SC, Riba M & Vendramin GG (2008) Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L. Conservation Genetics 9: 1665–1668. doi:10.1007/s10592-008-9515-3.
  • Ellenberg H & Leuschner C (1996) Vegetation Mitteleuropas mit den Alpen. 5th ed. Verlag Ulmer, Stuttgart, Germany.
  • Farris E & Filigheddu R (2008) Effects of browsing in relation to vegetation cover on common yew (Taxus baccata L.) recruitment in Mediterranean environments. Plant Ecology 199: 309–318. doi:10.1007/s11258-008-9434-x.
  • Garbarino M, Weisberg PJ, Bagnara L & Urbinati C (2015) Sex-related spatial segregation along environmental gradients in the dioecious conifer, Taxus baccata. Forest Ecology and Management 358: 122–129.
  • Gaino APSC, Silva AM, Moraes MA, Alves PF, Moraes MLT, Freitas MLM & Sebbenn AM (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Conservation Genetics 11: 1631–1643. doi:10.1007/s10592-010-0046-3.
  • Geyh MA & Müller H (2005) Numerical 230Th/U dating and a palynological review of the Holsteinian/Hoxnian Interglacial. Quaternary Science Reviews 24: 1861–1872.
  • Giertych P (2000) Factors determining natural regeneration of yew (Taxus baccata L.) in the Kórnik Arboretum. Dendrobiology 45: 31–40.
  • Godoy JA & Jordano P (2001) Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Molecular Ecology 10: 2275–2283.
  • Hampe A & Jump AS (2011) Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics 42: 313–333.
  • Heilbuth JC, Ilves KL & Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55: 880–888. doi:10.1554/0014-3820(2001)055[0880:TCODFS]2.0.CO;2.
  • Honnay O, Jacquemyn H, Bossuyt B & Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytologist 166: 723–736. doi:10.1111/j.1469-8137.2005.01352.x.
  • Iszkuło G (2001) The yew (Taxus baccata L.) of the Cisowy Jar reserve near Olecko. Dendrobiology 46: 33–37.
  • Iszkuło G (2010) Success and failure of endangered tree species: low temperatures and low light availability affect survival and growth of European yew (Taxus baccata L.) seedlings. Polish Journal of Ecology 58: 259–271.
  • Iszkuło G & Boratyński A (2005) Different age and spatial structure of two spontaneous subpopulations of Taxus baccata as a result of various intensity of colonization process. Flora – Morphology, Distribution, Functional Ecology of Plants 200: 195–206. doi:10.1016/j.flora.2004.03.001.
  • Iszkuło G, Didukh Y, Giertych MJ, Jasińska AK, Sobierajska K & Szmyt J (2012) Weak competitive ability may explain decline of Taxus baccata. Annals of Forest Science 69: 705–712. doi:10.1007/s13595-012-0193-4.
  • Iszkuło G, Lewandowski A, Jasińska AK & Dering M (2007) Light limitation of growth in 10-year-old seedlings of Taxus baccata L. (European yew). Polish Journal of Ecology 55: 827–831.
  • Iszkuło G, Nowak-Dyjeta K & Sękiewicz M (2014) Influence of initial light intensity and deer browsing on Taxus baccata saplings: a six years field study. Dendrobiology 71: 93–99. doi:10.12657/denbio.071.009.
  • Katsavou I & Ganatsas P (2012) Ecology and conservation status of Taxus baccata population in NE Chalkidiki, northern Greece. Dendrobiology 68: 55–62.
  • Koutsodendris A, Muller UC, Pross J, Brauer A, Kotthoff U & Lotter AF (2010) Vegetation dynamics and climate variability during the Holsteinian interglacial based on a pollen record from Dethlingen (northern Germany). Quaternary Science Reviews 29: 3298–3307. doi:10.1016/j.quascirev.2010.07.024.
  • Koutsodendris A, Pross J, Müller UC, Brauer A, Fletcher WJ, Kühl N, Kirilova E, Verhagen FTM, Lücke A & Lotter AF (2012) A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): An analogy to the 8.2ka climatic event? Global and Planetary Change 92–93: 224–235.
  • Kozáková R, Šamonil P, Kuneš P, Novák J, Kočár P & Kočárová R (2011) Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: Evidence from forestry, pollen and anthracological data. The Holocene 21: 431–444. doi:10.1177/0959683610385721.
  • Kramer AT, Ison JL, Ashley MV & Howe HF (2008) The paradox of forest fragmentation genetics. Conservation Biology 22: 878–885. doi:10.1111/j.1523-1739.2008.00944.x.
  • Król S (1986) Struktura i rozwój różnowiekowej populacji cisa Taxus baccata L. naturalnego pochodzenia w północno-zachodniej Polsce. Acta Universitatis Lodziensis. Folia Sozologica 3: 173–191.
  • Krupiński KM (1995) Stratygrafia pyłkowa i sukcesja roślinności interglacjału mazowieckiego w świetle badań osadów z Podlasia. Acta Geographica Lodziensia 70: 1–200.
  • Krupiński KM, Noryśkiewicz AM & Nalepka D (2004) Taxus baccata L. – yew: Late glacial and holocene history of vegetation in Poland based on is isopollen maps (ed. by M Ralska-Jasiewiczowa) W Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland, pp. 209–215.
  • Linares JC (2013) Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). Forest Ecology and Management 291: 119–127. doi:10.1016/j.foreco.2012.11.009.
  • Lindner L, Marks L & Nita M (2013) Climatostratigraphy of interglacials in Poland: Middle and Upper Pleistocene lower boundaries from a Polish perspective. Quaternary International 292: 113–123. doi: 10.1016/j.quaint.2012.11.018.
  • Lyubenova M & Nedelchev R (2001) Influence of human factors on population of Taxus baccata L. Journal of Balkan Ecology 4: 382–388.
  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gomory D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ & de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171: 199–221. doi:10.1111/j.1469-8137.2006.01740.x.
  • Mayol M, Riba M, González-Martínez SC, Bagnoli F, de Beaulieu JL, Berganzo E, Burgarella C, Dubreuil M, Krajmerová D, Paule L, Romsakova I, Wettori C, Vincenot L & Vendramin GG (2015) Adapting through glacial cycles: insights from a long-lived tree (Taxus baccata). New Phytologist 208: 973–986. doi:10.1111/nph.13496.
  • Myking T, Vakkari P & Skroppa T (2009) Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. Forestry 82: 529–539. doi:10.1093/forestry/cpp022.
  • Mysterud A & Østbye E (2004) Roe deer (Capreolus capreolus) browsing pressure affects yew (Taxus baccata) recruitment within nature reserves in Norway. Biological Conservation 120: 545–548. doi:10.1016/j.biocon.2004.03.027.
  • Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A & Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution 23: 638–647. doi:10.1016/j.tree.2008.08.003.
  • Nazareno AG, Alzate-Marin AL & Pereira R (2013) Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus. Ecology and Evolution 3: 3495–3508. doi:10.1002/ece3.739.
  • Nita M (2009) Stratygrafia pyłkowa i historia roślinności interglacjału mazowieckiego i starszej części złomowania Liwca w zachodniej części Wyżyn Polskich. Wydawnictwo Uniwersytetu Śląskiego, Katowice, Poland.
  • Noryśkiewicz AM (2002) Holoceńska historia lasów okolic Wierzchlasu na podstawie analizy pyłkowej osadów z jeziora Mukrz: Park Narodowy Bory Tucholskie na tle projektowanego rezerwatu biosfery PN Bory Tucholskie (ed. by J Banaszak & K Tobolski) Park Narodowy Bory Tucholskie, Charzykowy, Poland, pp. 195–204.
  • Noryśkiewicz AM (2006) Historia cisa w okolicy Wierzchlasu w świetle analizy pyłkowej. Wydawnictwo Uniwersytetu Mikołaja Kopernika w Toruniu, Toruń, Poland.
  • Perrin PM, Kelly DL & Mitchell FJG (2006) Long-term deer exclusion in yew-wood and oakwood habitats in southwest Ireland: Natural regeneration and stand dynamics. Forest Ecology and Management 236: 356–367. doi:10.1016/j.foreco.2006.09.025.
  • Perrin PM & Mitchell FJG (2013) Effects of shade on growth, biomass allocation and leaf morphology in European yew (Taxus baccata L.). European Journal of Forest Research 132: 211–218. doi:10.1007/s10342-012-0668-8.
  • Petit RJ & Hampe A (2006) Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematic 37: 187–214. doi:10.1146/annurev.ecolsys.37.091305.110215.
  • Pidek IA (2003) Mesopleistocene vegetation history in the northern foreland of the Lublin Upland based on palaeobotanical studies of the profiles from Zdany and Brus sites. Maria Curie-Skłodowska University Press, Lublin, Poland.
  • Piovesan G, Presutti Saba E, Biondi F, Alessandrini A, Di Filippo A & Schirone B (2009) Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies. Plant Ecology 205: 23–46. doi:10.1007/s11258-009-9596-1.
  • Ruprecht H, Dhar A, Aigner B, Oitzinger G, Klumpp R & Vacik H (2010) Structural diversity of English yew (Taxus baccata L.) populations. European Journal of Forest Research 129: 189–198. doi:10.1007/s10342-009-0312-4.
  • Schirone B, Ferreira RC, Vessella F, Schirone A, Piredda R & Simeone MC (2010) Taxus baccata in the Azores: a relict form at risk of imminent extinction. Biodiversity and Conservation 19: 1547–1565. doi:10.1007/s10531-010-9786-0.
  • Seidling W (1995) Eibenvorkommen in siedlungsnahen Forstgebieten und im besiedelten Bereich. Schr.- R. f. Vegetationskde 27: 441-449.
  • Seidling W (1998) Spatial structures of a subspontaneous population of Taxus baccata saplings. Flora – Morphology, Distribution, Functional Ecology of Plants 194: 439–451.
  • Sharma P, Uniyal PL & Slowik J (2014) Community involvement and conservation of Taxus baccata in Pangi valley, Himachal Pradesh. Natural Areas Journal 34: 470–474. doi:10.3375/043.034.0409.
  • Steward JR & Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16: 608–613. doi:10.1016/S0169-5347(01)02338-2.
  • Svenning JC & Magärd E (1999) Population ecology and conservation status of the last natural population of English yew (Taxus baccata) in Denmark. Biological Conservation 88: 173–182. doi:10.1016/S0006-3207(98)00106-2.
  • Thomas PA & Garcia-Marti X (2015) Response of European yews to climate change: a review. Forest Systems 24: eR01.
  • Thomas PA & Polwart A (2003) Taxus baccata L. Journal of Ecology 91: 489–524. doi:10.1046/j.1365-2745.2003.00783.x.
  • Tobolski K (2002) Pomijana tematyka badawcza rezerwatu „Cisy Staropolskie im. Leona Wyczółkowskiego” koło Wierzchlasu: Park Narodowy „Bory Tucholskie” na tle projektowanego rezerwatu biosfery (ed. by J Banaszczak, K Tobolski) Park Narodowy Bory Tucholskie, Charzykowy, Poland, pp. 165–194.
  • Tumiłowicz J (1965) Wzrost i pielęgnowanie cisów (Taxus baccata L.) w arboretum w Rogowie. Sylwan 109: 47–53.
  • Uzquiano P, Allué E, Antolín F, Burjachs F, Picornel L, Piqué R & Zapata L (2015) All about yew: on the trail of Taxus baccata in southwest Europe by means of integrated palaeobotanical and archaeobotanical studies. Vegetation History and Archaeobotany 24: 229–247. doi:10.1007/s00334-014-0475-x.
  • Vessella F, Salis A, Scirè M, Piovesan G & Schirone B (2015) Natural regeneration and gender-specific spatial pattern of Taxus baccata in an old-growth population in Foresta Umbra (Italy). Dendrobiology 73: 75–90. doi:10.12657/denbio.073.009.
  • Vessella F, Simeone MC, Fernandes FM, Schirone A, Gomes MP & Schirone B (2013) Morphological and molecular data from Madeira support the persistence of an ancient lineage of Taxus baccata L. in Macaronesia and call for immediate conservation actions. Caryologia 66: 162–177. doi:10.1080/00087114.2013.821842.
  • Vranckx G, Jacquemyn H, Muys B & Honnay O (2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conservation Biology 26: 228–237. doi:10.1111/j.1523-1739.2011.01778.x.
  • Waller MP & Hamilton S (2000) Vegetation history of the English chalklands: a mid-Holocene pollen sequence from the Caburn, East Sussex. Journal of Quaternary Science 15: 253–272. doi:10.1002/(SICI)1099-1417(200003)15:3.
  • Waller M & Early R (2015) Vegetation dynamics from a coastal peatland: insights from combined plant macrofossil and pollen data. Journal of Quaternary Science 30: 779–789.
  • Wang R, Compton SG & Chen XY (2011) Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Molecular Ecology 20: 4421–4432. doi:10.1111/j.1365-294X.2011.05293.x.
  • Whitlock MC (2000) Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54: 1855–1861. doi:10.1554/0014-3820(2000)054[1855:FONAAT]2.0.CO;2.
  • Willis KJ & van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369–2387. doi:10.1016/j.quascirev.2004.06.002.
  • Young A, Boyle T & Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413–418. doi:10.1016/0169-5347(96)10045-8.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-64445963-296f-4664-bbdd-4406efbd917b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.