PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 1 |

Tytuł artykułu

New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction?

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Nowe spojrzenie na ewolucję i ekologię nektaru: prosta nagroda kwiatowa czy złożone interakcje między wieloma organizmami?

Języki publikacji

EN

Abstrakty

EN
Floral and extra-floral nectars are secretions elaborated by specific organs (nectaries) that can be associated with plant reproductive structures (the so-called floral nectaries found only in angiosperms) or vegetative parts (extrafloral nectaries). These secretions are common in terrestrial vascular plants, especially angiosperms. Although gymnosperms do not seem to have true nectar, their ovular secretions may share evolutionary links with angiosperm nectar. Nectar is generally involved in interactions with animals and by virtue of its sugar and amino acid content, it has been considered a reward offered by plants to animals in exchange for benefits, mainly pollination and indirect defense against herbivores. These relationships are often cited as examples of classical mutualistic interactions. Nonetheless, recent studies dealing with compounds less abundant than sugars and amino acids challenge this view and suggest that nectar is much more complex than simply a reward in the form of food. Nectar proteins (nectarins) and nectar secondary compounds have no primary nutritious function but are involved in plant–animal relationships in other ways. Nectarins protect against proliferation of microorganisms and infection of plant tissues by pathogens. Nectar secondary compounds can be involved in modulating the behavior of nectar feeders, maximizing benefits for the plant. Nectar-dwelling microorganisms (mainly yeasts) were recently revealed to be a third partner in the scenario of plant–animal interactions mediated by nectar. There is evidence that yeast has a remarkable impact on nectar feeder behavior, although the effects on plant fitness have not yet been clearly assessed.
PL
Nektar kwiatowy jak i pozakwiatowy są wydzielinami produkowanymi przez specyficzne organy (nektarniki), które mogą być związane z generatywnymi strukturami kwiatowymi (tzw. nektarniki kwiatowe występujące wyłącznie u okrytozalążkowych) lub występujące na częściach wegetatywnych (nektarniki pozakwiatowe). Wydzieliny te są powszechne u naczyniowych roślin lądowych, zwłaszcza u okrytozalążkowych. Chociaż wydaje się, że nagozalążkowe nie wytwarzają prawdziwego nektaru, to ich wydzieliny produkowane przez zalążki mogą być ewolucyjnie powiązane z nektarem okrytozalążkowych. Generalnie, nektar uczestniczy w interakcjach ze zwierzętami i ze względu na zawartość cukrów oraz aminokwasów jest uważany za nagrodę oferowaną przez rośliny dla zwierząt w zamian za korzyści, głównie zapylenie, a także pośrednio, za ochronę przed szkodnikami. Powyższe związki między roślinami i zwierzętami są podawane jako przykłady klasycznych interakcji mutualistycznych. Jednakże obecne badania innych składników nektaru, które występują w mniejszych ilościach niż cukry i aminokwasy zakwestionowały ten pogląd, a na ich podstawie sugeruje się, że nektar jest bardziej kompleksową wydzieliną niż tylko prostą nagrodą w formie pożywienia. Białka zawarte w nektarze (nektaryny) i wtórne metabolity nie pełnią pierwotnej funkcji odżywczej lecz w zupełnie inny sposób uczestniczą w interakcji roślina–zwierzę. Nektaryny pełnią funkcję ochronną zapobiegając namnażaniu się mikroorganizmów i infekcji tkanek roślinnych przez patogeny. Metabolity wtórne zawarte w nektarze mogą modulować zachowanie zwierząt żerujących na nektarze wpływając na zwiększenie korzyści dla rośliny. Mikroorganizmy zasiedlające nektar (głównie drożdże) obecnie uznano za trzeciego partnera interakcji między roślinami i zwierzętami, które odbywają się za pośrednictwem nektaru. Istnieją dowody, że drożdże mają istotny wpływ na zachowanie zwierząt odżywiających się nektarem, chociaż korzystny wpływ na roślinę nie został dotychczas oszacowany.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

1

Opis fizyczny

Article 1704 [12p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Koptur S, Palacios-Rios M, Díaz-Castelazo C, Mackay WP, Rico-Gray V. Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants. Ann Bot. 2013;111:1277–1283. https://doi.org/10.1093/aob/mct063
  • 2. Ward PS. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa. 2007;1668:549–563.
  • 3. Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E. Nectar and pollination drops: how different are they? Ann Bot. 2009;104:205–219. https://doi.org/10.1093/aob/mcp180
  • 4. De la Barreira E, Nobel PS. Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci. 2004;9:65–69. https://doi.org/10.1016/j.tplants.2003.12.003
  • 5. Marazzi B, Bronstein JL, Koptur S. The diversity, ecology and evolution of extra-floral nectaries: current perspectives and future challenges. Ann Bot. 2013;111:1243–1250. https://doi.org/10.1093/aob/mct109
  • 6. Weber MG, Keeler HK. The phylogenetic distribution of extra-floral nectaries in plants. Ann Bot. 2013;111:1251–1261. https://doi.org/10.1093/aob/mcs225
  • 7. Wäckers F. It pays to be sweet: sugars in mutualistic interactions. Biologist. 2002;49:165–169.
  • 8. Bernardello G. A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 19–128. https://doi.org/10.1007/978-1-4020-5937-7_2
  • 9. Labandeira CC, Kvaçek J, Mostovski MB. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon. 2007;56:663–695. https://doi.org/10.2307/25065853
  • 10. Procheş Ş, Johnson SD. 2009. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am J Bot. 2009;96:1722–1730. https://doi.org/10.3732/ajb.0800377
  • 11. Gong YB, Yang M, Vamosi JC, Yang HM, Mu WX, Li JK, et al. Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales). Plant Species Biol. 2016;31(4):271–279. https://doi.org/101111/1442-1984.12112
  • 12. Rydin C, Bolinder K. Moonlight pollination in the gymnosperm Ephedra (Gnetales). Biol Lett. 2015;11:20140993. https://doi.org/10.1098/rsbl.2014.0993
  • 13. Bolinder K, Humphreys AM, Ehrlén J, Alexandersson R, Ickert-Bond SM, Rydin C. From near extinction to diversification by means of a shift in pollination mechanism in the gymnosperm relict Ephedra (Ephedraceae, Gnetales). Bot J Linn Soc. 2016;180:461–477. https://doi.org/10.1111/boj.12380
  • 14. Jörgensen A, Rydin C. Reproductive morphology in the Gnetum cuspidatum group (Gnetales) and its implications for pollination biology in the Gnetales. Plant Ecol Evol. 2015;148:387–396. https://doi.org/10.5091/plecevo.2015.1142
  • 15. Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih CK, Bashkuev A, et al. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science. 2009;326:840–847. https://doi.org/10.1126/science.1178338
  • 16. Crepet LM, Niklas KJ. Darwin’s second “abominable mystery”: why are there so many angiosperm species? Am J Bot. 2009;96:366–381. https://doi.org/10.3732/ajb.0800126
  • 17. Nicolson SW. Nectar consumers. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 289–342. https://doi.org/10.1007/978-1-4020-5937-7_7
  • 18. González-Teuber M, Heil M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav. 2009;4:809–813. https://doi.org/10.4161/psb.4.9.9393
  • 19. Nicolson SW, Thornburg RW. Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 215–264. https://doi.org/10.1007/978-1-4020-5937-7_5
  • 20. Nepi M. Nectar: plant interface for complex interaction with biotic environment. In: Ramawat KG, Mérillon JM, Shivanna KR, editors. Reproductive biology of plants. Boca Raton, FL: CRC Press; 2012. p. 268–283. https://doi.org/10.1201/b16535-13
  • 21. Baker HG, Baker I. Floral nectar sugar constituents in relation to pollinator type. In: Little RJ, Jones CE, editors. Handbook of pollination biology. New York, NY: Scientific and Academic Editions; 1983. p. 117–141.
  • 22. Johnson SD, Nicholson S. Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol Lett. 2008;4:49–52. https://doi.org/10.1098/rsbl.2007.0496
  • 23. Napier KR, McWhorter TJ, Nicolson S, Fleming PA. Sugar preferences of avian nectarivores are correlated with intestinal sucrase activity. Physiol Biochem Zool. 2013;86:499–514. https://doi.org/10.1086/672013
  • 24. Blüthgen N, Fiedler K. Preferences for sugar and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol. 2004;73:155–166. https://doi.org/10.1111/j.1365-2656.2004.00789.x
  • 25. Heil M, Rattke J, Bolland W. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science. 2005;308:560–563. https://doi.org/10.1126/science.1107536
  • 26. Bertazzini M, Medrzycki P, Bortolotti L, Maistrello L, Forlani G. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids. 2010;39:315–318. https://doi.org/10.1007/s00726-010-0474-x
  • 27. Nocentini D, Pacini E, Guarnieri M, Nepi M. Flower morphology, nectar traits and pollinators of Cerinthe major (Boraginaceae-Lithospermeae). Flora. 2012;207:186–196. https://doi.org/10.1016/j.flora.2012.01.004
  • 28. Petanidou T. Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 343–375. https://doi.org/10.1007/978-1-4020-5937-7_8
  • 29. González-Teuber M, Heil M. The role of extra-floral nectar amino acids for the preferences of facultative and obligate ant mutualists. J Chem Ecol. 2009;35:459–468. https://doi.org/10.1007/s10886-009-9618-4
  • 30. Adler LS. The ecological significance of toxic nectar. Oikos. 2000;91:409–420. https://doi.org/10.1034/j.1600-0706.2000.910301.x
  • 31. Stevenson PC, Nicolson SW, Wright JA. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol. 2017;31:65–75. https://doi.org/10.1111/1365-2435.12761
  • 32. Manson JS, Cook D, Gardner DR, Irwin RE. Dose-dependent effects of nectar alkaloids in a montane plant-pollinator community. J Ecol. 2013;101:1604–1612. https://doi.org/10.1111/1365-2745.12144
  • 33. Kessler D, Gasse K, Baldwin IT. Field experiments with transformed plants reveal the sense of floral scents. Science. 2008;321:1200–1202. https://doi.org/10.1126/science.1160072
  • 34. Kessler D, Baldwin IT. Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors to Nicotiana attenuata. Plant J. 2007;49:840–854. https://doi.org/10.1111/j.1365-313X.2006.02995.x
  • 35. Singaravelan NG, Nee’man G, Inbar M, Izhaki I. Feeding responses of free-flying honeybees, to secondary compounds mimicking floral nectars. J Chem Ecol. 2005;31:2791–2804. https://doi.org/10.1007/s10886-005-8394-z
  • 36. Singaravelan N. Secondary compounds in nectar: the other side of the coin. In: Zhang W, Liu H, editors. Behavioral and chemical ecology. New York, NY: Nova Publishers; 2010. p. 217–238.
  • 37. Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science. 2013;339:1202–1204. https://doi.org/10.1126/science.1228806
  • 38. Couvillon MJ, Al Toufailia H, Butterfield TM, Schrell F, Ratnieks FLW, Schurch R. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviours. Curr Biol. 2015;25:2815–2818. https://doi.org/10.1016/j.cub.2015.08.052
  • 39. Nepi M. Beyond nectar sweetness: the hidden ecological role of non-protein amino acids in nectar. J Ecol. 2014;102:108–115. https://doi.org/10.1111/1365-2745.12170
  • 40. Stevenson PA. Co-localisation of taurine- with transmitter-immunoreactivities in the nervous system of the migratory locust. J Comp Neurol. 1999;404:86–96. https://doi.org/10.1002/(SICI)1096-9861(19990201)404:1<86::AID-CNE7>3.0.CO;2-8
  • 41. Bown AW, MacGregor KB Shelp BJ. Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci. 2006;11:424–427. https://doi.org/10.1016/j.tplants.2006.07.002
  • 42. Shoonhoven L, van Loon JJA, Dicke M. Insect–plant biology. Oxford: Oxford University Press; 2005.
  • 43. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47. https://doi.org/10.1016/S0074-7696(02)13011-7
  • 44. Zhang M, Izumi I, Kagamimori S, Sokejima S, Yamagami T, Liu Z, et al. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004;26:203–207. https://doi.org/10.1007/s00726-003-0002-3
  • 45. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–233. https://doi.org/10.1007/s00726-006-0364-4
  • 46. Nepi M, Nocentini D, Guarnieri M, Bogo G, Laura B, Galloni M, et al. Non-protein amino acids in nectar: are they tools to modulate insect behavior and increase plant reproductive output? In: Book of abstracts of the International Congress on Plant Reproduction; 2014 Sep 16, Bologna, Italy. Bologna: University of Bologna; 2014. p. 12.
  • 47. Cardoso-Gustavson P, Andreazza NL, Sawaya ACHF, de Moraes Castro M. Only attract ants? The versatility of petiolar extrafloral nectaries in Passiflora. Am J Plant Sci. 2013;4:460–469. https://doi.org/10.4236/ajps.2013.42A059
  • 48. Beutler R. Nectar. Bee World. 1935;24:106–162.
  • 49. Carter C, Thornburg RW. Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci. 2004;9:320–324. https://doi.org/10.1016/j.tplants.2004.05.008
  • 50. Carter C, Healy R, O’Tool NM, Naqvi SMS, Ren G, Park S, et al. Tobacco nectaries express a novel NADPH oxidase implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiol. 2007;143:389–399. https://doi.org/10.1104/pp.106.089326
  • 51. Kram B, Bainbridge E, Perera M, Carter C. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol. 2008;68:173–183. https://doi.org/10.1007/s11103-008-9361-1
  • 52. González-Teuber M, Pozo MJ, Muck A., Svatos A, Adame-Álvarez RM, Heil M. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol. 2010;152:1705–1715. https://doi.org/10.1104/pp.109.148478
  • 53. Hillwig MS, Kanobe C, Thornburg RW, MacIntosh GC. Identification of S-RNase and peroxidase in Petunia nectar. J Plant Physiol. 2011;168:734–738. https://doi.org/10.1016/j.jplph.2010.10.002
  • 54. Nepi M, Bini L, Bianchi L, Puglia M, Abate M, Cai G. Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo. Ann Bot. 2011;108:521–527. https://doi.org/10.1093/aob/mcr165
  • 55. Seo PJ, Wielsch N, Kessler D, Svatos A, Park CM, Baldwin IT, et al. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions. BMC Plant Biol. 2013;13:101. https://doi.org/doi:10.1186/1471-2229-13-101
  • 56. Zha HG, Liu T, Zhou JJ, Sun H. MS-desi, a desiccation-related protein in the floral nectar of the evergreen velvet bean (Mucuna sempervirens Hemsl): molecular identification and characterization. Planta. 2013;238:77–89. https://doi.org/10.1007/s00425-013-1876-2
  • 57. Zhou Y, Li M, Zhao F, Zha ., Yang L, Lu, Y., et al. Floral nectary morphology and proteomic analysis of nectar of Liriodendron tulipifera Linn. Front Plant Sci. 2016;7:826. https://doi.org/10.3389/fpls.2016.00826
  • 58. Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett. 2014;17:185–192. https://doi.org/10.1111/ele.12215
  • 59. Bubán T, Orosz-Kovacs Z, Farkas A. The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol. 2003;238:183–194. https://doi.org/10.1007/s00606-002-0266-1
  • 60. Sasu MA, Seidl-Adams I, Wall K, Winsor JA, Stephenson AG. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ Entomol. 2010;39:140–148. https://doi.org/10.1603/EN09190
  • 61. Herrera CM, de Vega C, Canto A, Pozo MI. Yeasts in floral nectar: a quantitative survey. Ann Bot. 2009;103:1415–1423. https://doi.org/10.1093/aob/mcp026
  • 62. Canto A, Herrera CM. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community. Ann Bot. 2012;110:1173–1183. https://doi.org/10.1093/aob/mcp026
  • 63. Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol. 2015;15:2. https://doi.org/10.1186/s12898-015-0036-x
  • 64. Canto A, Herrera CM, García IM, Pérez R, Vaz M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora. 2011;206:668–675. https://doi.org/10.1016/j.flora.2011.02.003
  • 65. de Vega C, Herrera CM. Micro-organisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant. Am J Bot. 2013;100:792–800. https://doi.org/10.3732/ajb.1200626
  • 66. Pozo MI, Lievens B, Jacquemin H. Impact of microorganisms on nectar chemistry, pollinator attraction and plant fitness. In: Peck RL, editor. Nectar: production, chemical composition and benefits to animals and plants. New York, NY: Nova Science Publishers; 2014. p. 1–40.
  • 67. Ehlers BK, Olesen JM. The fruit-wasp route to toxic nectar in Epipactis orchids. Flora. 1996;192:223–229.
  • 68. Raguso RA. Why are some floral nectars scented? Ecology. 2004;85:1486–1494. https://doi.org/10.1890/03-0410
  • 69. Raguso RA. Floral scent in a whole-plant context: moving beyond pollinator attraction. Funct Ecol. 2009;23:837–840. https://doi.org/10.1111/j.1365-2435.2009.01643.x
  • 70. Herrera CM, Pozo MI, Medrano M. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology. 2013;94:273–279. https://doi.org/10.1890/12-0595.1
  • 71. Vannette RL, Gauthier M-PL, Fukami, T. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc B. 2013;280:20122601. https://doi.org/10.1098/rspb.2012.2601
  • 72. Kennedy DO. Plants and human brain. Oxford: Oxford University Press; 2014.
  • 73. Caruso M, Fiore C, Contursi M, Salzano G, Paparella A, Romano P. Formation of biogenic amines for the selection of wine yeasts. World J Microbiol Biotechnol. 2002;18:159–163. https://doi.org/10.1023/A:1014451728868
  • 74. Vannette R, Fukami T. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology. 2016;97:1419–1419. https://doi.org/10.1890/15-0858.1
  • 75. Grasso D, Pandolfi C, Bazihizina N, Nocentini D, Nepi M, Mancuso S. Extrafloral-nectar based partner manipulation in plant-ant relationships. AoB Plants. 2015;7:plv002. https://doi.org/10.1093/aobpla/plv002

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-636d3287-0d59-45b7-9b9a-93cf727d04c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.