PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Radial oxygen loss (ROL) has been suggested to be a major process to protect plants exposed to the anaerobic by-products of soil anaerobiosis. The aim of the present study was to test the effects of root ROL from two submerged plants (Hydrilla verticillata and Vallisneria spiralis) on the rhizosphere oxygen profile and rhizosphere microarea. Phospholipid fatty acids (PLFAs) of sediment samples were used to characterize and quantify the microbial community. The results showed clearly that there were significant differences between the two plants in radial oxygen loss, which affected rhizosphere physicochemical parameters and the microbial community. Rhizosphere total biomass, bacteria, gram-positive bacteria, actinomycetes, and microbial diversity of V. spiralis were significantly higher than those of H. verticillata. The present study highlights root ROL as a key parameter affecting the microbial community of the rhizosphere microarea.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1795-1802,fig.,ref.

Twórcy

autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Bibliografia

  • 1. CROOKS J.A. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Minireview. 153, 2002.
  • 2. LAI W.L., ZHANG Y., CHEN Z.H. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol. Eng., 39, 24, 2012.
  • 3. ARMSTRONG, W. Aeration in higher plants. Advances in Botanical Research, (7), 225, 1979.
  • 4. STOTTMEISTER U., WIEßNER A., KUSCHK P., KAPPELMEYER U., KÄSTNER M., BEDERSKI O., MÜLLER R.A., MOORMANN H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv., 22, (1-2), 93, 2003.
  • 5. CHENG X.Y., WANG M., ZHANG C.F., WANG S.Q., CHEN Z.H. Relationships between plant photosynthesis, radial oxygen loss and nutrient removal in constructed wetland microcosms. Biochem. Syst. Ecol., 54, 299, 2014.
  • 6. DE RIDDER-DUINE A.S., KOWALCHUK G.A., KLEIN GUNNEWIEK P.J.A., SMANT W., VAN VEEN J.A., DE BOER W. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol. Biochem., 37, (2), 349, 2005.
  • 7. EMERSON D., BELLOWS W., KELLER J.K., MOYER C.L., SUTTON-GRIER A., MEGONIGAL J.P. Anaerobic metabolism in tidal freshwater wetlands: II. Effects of plant removal on archaeal microbial communities. Estuar. Coast, 36, (3), 471, 2013.
  • 8. HINSINGER P., BENGOUGH A.G., VETTERLEIN D., YOUNG I.M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil, 321, (1-2), 117, 2009.
  • 9. LI Y., WANG X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant Soil, 365, 115, 2013.
  • 10. SMITH K.E., LUNA T.O. Radial oxygen loss in wetland plants: Potential impacts on remediation of contaminated sediments. J. Environ. Eng., 139, (4), 496, 2013.
  • 11. PEDERSEN O., BINZER T., BORUM J. Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ., 27, (5), 595, 2004.
  • 12. CAVAGLIERI L., ORLANDO J., ETCHEVERRY M. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol. Res., 164, (4), 391, 2009.
  • 13. YU H., YE C., SONG X., LIU J. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecol. Eng., 36, (10), 1285, 2010.
  • 14. SOANA E., NALDI M., BARTOLI M. Effects of increasing organic matter loads on pore water features of vegetated (Vallisneria spiralis L.) and plant-free sediments. Ecol. Eng., 47, 141, 2012.
  • 15. WANG A. L. Effects of emergent plant species and growth strategy on microbial community structure and diversity. Pol. J. Environ. Stud., 22, (5), 1563, 2013.
  • 16. DONG W.Y., ZHANG X.Y., DAI X. Q., FU X.L., YANG F.T., LIU X.Y., SUN X.M., WEN X.F., SCHAEFFER S. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Soil Biol. Biochem., 84, 140, 2014.
  • 17. WILKINSON S.C., MANDERSON J., PSCARDELIS S., TISIAFOULI M., TAYLOR A., WOLTERS V. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem., 34, 189, 2002.
  • 18. KLUDZE H.K., DELAUNE R.D., PATRICK J.W.H. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. Soc. Am. J., 57, (2), 386, 1993.
  • 19. RUBAN V., LÓPEZ-SÁNCHEZ J.F., PARDO P., RAURET G., MUNTAU H., QUEVAUVILLER P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments – A synthesis of recent works. Fresen. J. Anal. Chem., 370, 224, 2001.
  • 20. MOSS M.L., MELLON M.G. Colorimetric determination of iron with 2, 2,-bipyridyl and with 2, 2, 2-terpyridyl. Industrial and Engineering Chemistry-analytical Edition, 14, (11), 862, 1942.
  • 21. YANG X.E., LI H., KIRK G.J.D., DOBBERMANN A. Room-induced changes of potassium in the rhizosphere of Lowland Rice. Soil Sci. Plan., 36, 1947, 2005.
  • 22. HOAGLAND D.R., ARNON D.I. The water-culture method for growing plants without soil. Calif Agr. Expt. Sta. Circ., 347, 1, 1950.
  • 23. YUAN F., RAN W., SHEN Q., WANG D. Characterization of nitrifying bacteria communities of soils from different ecological regions of China by molecular and conventional methods. Biol. Fert. Soils, 41, (1), 22, 2005.
  • 24. BOSSIO D., SCOW K. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol., 35, 265, 1998.
  • 25. FROSTEGÅRD A., BÅÅTH E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soil, 22, (1-2), 59, 1996.
  • 26. ZELLES L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35, (1-2), 275, 1997.
  • 27. VISSER E.J.W., COLMER T.D., BLOM C. W.P.M. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ., 23, 1237, 2000.
  • 28. COLMER T.D. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ., 26, 17, 2003.
  • 29. LEMOINE D.G., MERMILLOD-BLONDIN F., BARRAT-SEGRETAIN M.H., CORINNE MASSÉ, MALET E. The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia. Aquat. Ecol., 46, 191, 2012.
  • 30. PEZESHKI S.R., DELAUNE R.D. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology, 1, (2), 196, 2012.
  • 31. BERG P., RØY H., JANSSEN F., MEYER V., JØRGENSEN B.B., HUETTEL M., BEER D.D. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser., 261, 75, 2003.
  • 32. YANG J.X., LIU Y., YE Z.H. Root-induced changes of pH, Eh, Fe(II) and fractions of Pb and Zn in rhizosphere soils of four wetland plants with different radial oxygen losses. Pedosphere, 22, (4), 518, 2012.
  • 33. KIRK G.J., KRONZUCKER H.J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann. Bot., 96, (4), 639, 2005.
  • 34. BÅÅTH E., FROSTEGÅRD Ǻ., FRITZE H. Soil bacteria biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl. Environ. Microbiol., 58, 4026, 1992.
  • 35. CHAUDHARY D.R., SAXENA J., LORENZ N., DICK L. K., DICK R.P. Microbial profiles of rhizosphere and bulk soil microbial communities of biofuel crops Switchgrass (Panicum virgatum L.) and Jatropha (Jatropha curcas L.). Applied and Environmental Soil Science, 2012, 1, 2012.
  • 36. SÖDERBERG K.H. BÅÅTH E. Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques. Soil Biol. Biochem., 30, (10-11), 1259, 1998.
  • 37. CARRASCO L., GATTINGER A., FLIESSBACH A., ROLDAN A., SCHLOTER M., CARAVACA F. Estimation by PLFA of microbial community structure associated with the rhizosphere of Lygeum spartum and Piptatherum miliaceum growing in semiarid mine tailings. Microbial Ecol., 60, 265, 2010.
  • 38. ZHANG C., LIU G., XUE S., XIAO L. Effect of different vegetation types on the rhizosphere soil microbial community structure in the Loess Plateau of China. J. Integr. Agr., 12, 2103, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-62ddfbc7-26f2-4146-b81e-54fe169fba17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.