PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 67 | 2 |

Tytuł artykułu

Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

Treść / Zawartość

Warianty tytułu

PL
Zróżnicowany wpływ inhibitorów polarnego transportu auksyny na ukorzenianie niektórych gatunków z rodziny Crassulaceae

Języki publikacji

EN

Abstrakty

EN
Effects of auxin polar transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphthylphthalamic acid (NPA) and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456), as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.
PL
Badano wpływ inhibitorów polarnego transportu auksyny, kwasu 2,3,5-trójjodobenzoesowego (TIBA), kwasu 1-N-naftyloftalamowego (NPA) i morfaktyny, kwasu metylo 2-chloro-9-hydroksy-fluoreno-karboksylowego (IT 3456), na tworzenie korzeni w sadzonkach niektórych gatunków Crassulaceae, Brophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana i K. tubiflora. Sadzonki tych gatunków łatwo się ukorzeniają w wodzie bez dodatkowego traktowania. Stwierdzono, że TIBA i morfaktyna całkowicie hamują tworzenie się korzeni, kiedy inhibitory były zastosowane w paście lanolinowej na łodydze poniżej liści. Kiedy TIBA i morfaktynę u B. calycinum i K. blossfeldiana podano wokół łodygi przy wierzchołku, a liście na łodydze były poniżej traktowania, korzenie tworzyły się ale w mniejszym stopniu niż w roślinach nietraktowanych. Otrzymane wyniki sugerują, że endogenna auksyna jest niezbędna dla tworzenia się korzeni w sadzonkach roślin z rodziny Crassulaceae. Zróżnicowane działanie NPA w porównaniu z TIBA i morfaktyną na ukorzenianie jest dyskutowane z różnym wpływem oddziaływania NPA na polarny transport auksyny.

Wydawca

-

Czasopismo

Rocznik

Tom

67

Numer

2

Opis fizyczny

p.85-92,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
autor
  • Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Bibliografia

  • 1.Han H, Zhang S, Sun X. A review on the molecular mechanism of plant rooting modulated by auxin. Afr J Bio-technol. 2009; 8: 348-353.
  • 2.Berleth T, Sachs T. Plant morphogenesis: long-di-stance coordination and local pattering. Curr Opin Plant Biol. 2001; 4: 57-62. http://dx.doi.org/10.1016/S1369-5266 (00)00136-9
  • 3.Kramer EM, Bennett MJ. Auxin transport: a field in flux. Trends Plant Sci. 2006; 11: 382-386. http://dx.doi. org/10.1016/j.tplants.2006.06.002
  • 4.Roberts HS, Friml J. Auxin and other signals on the move in plants. Nature Chemical Biology. 2009; 5: 325-332.
  • 5.Katsumi M, Chiba Y, Fukuyama M. The role of the cotyledons and auxin in the adventitious root for-mation of hypocotyl cuttings of light-grown cucumber se-edlings. Physiol Plant. 1969; 22: 993-1000. http://dx.doi. org/10.1111/j.1399-3054.1969.tb07457.x
  • 6.Batten DJ, Goodwin PB. Auxin transport inhibitors and the rooting of hypocotyl cuttings from etiolated mung-bean Vigna radiata (L.) Wilczek seedlings. Ann Bot. 1981; 47: 497-503.
  • 7.Liu J H , Reid D M . Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. IV. The role of changes in endogenous free and conjugated indole-3-acetic acid. Physiol Plant. 1992; 86: 285-292.
  • 8.Guerrero JR, Garrido G, Acosta M, San-chez - Bravo J. Influence of 2,3,5 triiodobenzoic acid and 1-naphthylphthalamic acid on indoleacetic acid transport in carnation cuttings: relationship with rooting. J Plant Growth Regul. 1999; 18: 183-190. http://dx.doi.org/10.1007/ PL00007068
  • 9.Garrido G, Guerrero JR, Cano EA, Acosta M, Sanchez-Bravo J. Origin and basipetal of the IAA responsible for rooting and carnation cuttings. Physiol Plant. 2002; 114: 303-312. http://dx.doi.org/10.1034/j.1399-3054.2002.1140217.x
  • 10.Marks TR, Ford Y-Y, Cameron RWF, Good-win C , Meyers P E , Judd H L . A role for polar auxin transport in rhizogenesis. Plant Cell Tiss Organ Cult. 2002; 70: 189-198.
  • 11.Khan AR, Andersen AS, Hansen J. Morphactin and adventitious root formation in pea cuttings. Physiol Plant. 1977; 39: 97-100. http://dx.doi.org/10.1111/ j.1399-3054.1977.tb04016.x
  • 12.Nanda K K , Bhattacharya N C , Kaur N P. Effect of morphactin on peroxidases and its relationship to ro-oting hypocotyl cuttings of Impatiens balsamina. Plant Cell Physiol. 1973; 14: 207-211.
  • 13.Kochhar VK, Anand VK, Nanda KK. Effect of morphactin on rooting and sprouting of buds on stem cuttings of Salix tetrasperma. Bot Gaz. 1972; 133: 361-368. http://dx.doi.org/10.1086/336656
  • 14.Kulka R G . Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum; role of auxin and ethylene. J Exp Bot. 2008; 59: 2361-2370. http://dx.doi.org/10.1093/jxb/ern106
  • 15.Fujita H, Syono K. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabi-dopsis thaliana. Plant Cell Physiol. 1996; 37: 1094-1101. http://dx.doi.org/10.1093/oxfordjournals.pcp.a029059
  • 16.Depta H , Eisele K H , Hertel R . Specific inhibitors of auxin transport: action on tissue segments and in vitro binding to membranes from maize coleoptiles. Plant Sci Let-ters. 1983; 31: 181-192. http://dx.doi.org/10.1016/0304-42 11(83)90055-X
  • 17.Katekar GF, Giessler AE. Auxin transport inhibitors. IV. Evidence of a common mode of action for a propo-sed class of auxin transport inhibitors: The phytotropins. Plant Physiol. 1980; 66: 1190-1195. http://dx.doi.org/10.1104/ pp.66.6.1190
  • 18.Lomax TL, Muday GK, Rubery PH. Auxin transport. In: Plant hormones, ed. by P.J. Davis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995; pp. 509-530.
  • 19. Ruegger M , Dewey E , Hobbie L , Brown D , Bernasconi P, Turner J, Muday G, Estelle M. Reduced naphthylphtalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar transport and diverse morphological defects. Plant Cell. 1997; 9: 745-757.
  • 20. Muday G K , Brunn S A , Haworth P, Subramanian M. Evidence for a single naphthylphthalamic acid binding site on the zucchini plasma membrane. Plant Physiol. 1993; 103: 449-456.
  • 21.Ahkami A H , Melzer M , Ghaffari M R , Pollmann S, Javid MG, Shahinnia F, Hajirezaei MR, Druege U. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta. 2013; 238: 499-517. http://dx.doi.org/ 10.1007/s00425-013-1907-z
  • 22.Rincon A , Priha O , Sotta B , Bonnet M , Le Tacon F. Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor. Tree Physiol. 2003; 23: 785-791. http://dx.doi.org/10.1093/treephys/23.11.785
  • 23.Thein M , Michalke W. Bisulfite interacts with bind-ing sites of the auxin-transport inhibitor N-1-naphthylphtha-lamic acid. Planta. 1988; 176: 343-350. http://dx.doi.org/ 10.1007/BF00395414
  • 24.Tamimi S , Firn R D . The basipetal auxin transport system and the control of cell elongation in hypocotyls. J Exp Bot. 1985; 36: 955-962. http://dx.doi.org/10.1093/ jxb/36.6.955
  • 25.Jensen PJ, Hangarter RP, Estelle M. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol. 1998; 116: 455-462. http://dx.doi.org/10.1104/pp.116.2.455
  • 26.Murphy A, Taiz L. Naphthylphthalamic acid is enzy-matically hydrolyzed at the hypocotyl-root transition zone and other tissues of Arabidopsis thaliana seedlings. Plant Physiol Biochem. 1999a; 37: 413-430.
  • 27.Murphy A, Taiz L. Localization and characterization of soluble and plasma membrane aminopeptidase activities in Arabidopsis thaliana seedlings. Plant Physiol Biochem. 1999b; 37: 431-443.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6299b422-61f0-4e07-8f72-e032cd70b472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.