PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 | 1 |

Tytuł artykułu

Early postnatal development of the lumbar vertebrae in male Wistar rats: double staining and digital radiological studies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to evaluate the physiological developmental changes of male rats’ lumbar vertebrae during the first 22 days after birth. Morphology and mineralisation of lumbar vertebrae were evaluated using double-staining and digital radiography system, which allowed vertebral width and optical density to be determined. Pup weight, crown-rump length, body mass index and vertebral width increased during postnatal period and significantly correlated with their age. Bone mineralisation, as measured by optical density, did not show any significant differences. The complete fusion of the primary ossification centres had a cranio-caudal direction and started on day 19 after parturition but was incomplete by day 22. It could be concluded that, unlike significant age-related increase of vertebral size, mineralisation was only slightly elevated during evaluated postnatal period. The method described is supplementary to alizarin red S staining as it provides both qualitative and quantitative data on mineralisation in a similar manner to micro computed tomography but does not allow 3 dimensional and microarchitecture examination. (Folia Morphol 2016; 75, 1: 1–13)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

75

Numer

1

Opis fizyczny

p.1-13,fig.,ref.

Twórcy

autor
  • Experimental Teratology Unit, Human Anatomy Department, Medical University of Lublin, Jaczewskiego 4, 20–090 Lublin, Poland
  • Radiology Department, St. John’s Cancer Centre, Lublin, Poland
  • Human Anatomy Department, Medical University of Lublin, Lublin, Poland
  • Independent Unit of Propaedeutic of Dental and Maxillofacial Radiology, Medical University of Lublin, Lublin, Poland
autor
  • Clinical Pathomorphology Department, Medical University of Lublin, Lublin, Poland
  • Human Anatomy Department, Medical University of Lublin, Lublin, Poland
autor
  • Dental and Maxillofacial Radiology Department, Medical University of Lublin, Lublin, Poland
autor
  • Clinical Pathomorphology Department, Medical University of Lublin, Lublin, Poland
autor
  • Clinical Pathomorphology Department, Medical University of Lublin, Lublin, Poland

Bibliografia

  • 1. Aliverti V, Bonanomi L, Giavini E, Leone VG, Mariani L (1979) The extent of fetal ossification as an index of delayed development in teratogenic studies on the rat. Teratology, 20: 237–242.
  • 2. Barrow PC (2009) Reproductive toxicity testing for pharmaceuticals under ICH. Reprod Toxicol, 28: 172–179.
  • 3. Boardman JP, Mitala JJ, Carrano RA, Iuliucci JD (1984) Cartilage-staining technique for the examination of unskinned fetal rat specimens previously processed with alizarin red S. Teratology, 30: 383–384.
  • 4. Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol, 37: 301–304.
  • 5. Burdan F, Pliszczynska-Steuden M, Rozylo-Kalinowska I, Chalas A, Rozylo TK, Staroslawska E, Klepacz R, Szumilo J (2011) Developmental outcome after exposure to cyclooxygenase inhibitors during pregnancy and lactation. Reprod Toxicol, 32: 407–417.
  • 6. Burdan F, Rozylo-Kalinowska I, Rozylo TK, Chahoud I (2002) A new rapid radiological procedure for routine teratological use in bone ossification assessment: a supplement for staining methods. Teratology, 66: 315–325.
  • 7. Burdan F, Rozylo-Kalinowska I, Szumilo J, Dudka J, Klepacz R (2008) Cyclooxygenase inhibitors affect bone mineralization in rat fetuses. Cells Tissues Organs, 187: 221–232.
  • 8. Burdan F, Szumilo J, Dudka J, Klepacz R, Blaszczak M, Solecki M, Korobowicz A, Chalas A, Klepacki J, Palczak M, Zuchnik-Wrona A, Hadała-Kis A, Urbanowicz Z, Wojtowicz Z (2005) Morphological studies in modern teratological investigations. Folia Morphol, 64: 1–8.
  • 9. Chahoud I, Paumgartten FJ (2009) Dose-response relationships of rat fetal skeleton variations: Relevance for risk assessment. Environ Res, 109: 922–929.
  • 10. Chahoud I, Paumgartten FJ (2009) Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ Res, 109: 1021–1027.
  • 11. Christian MS (2001) Test methods for assessing female reproductive and developmental toxicology. In: Hayes AW ed. Principles and method of toxicology. 4 Ed. Taylor and Francis, Philadelphia, pp. 1301–1381.
  • 12. Czyz M, Kedzia A (2004) Geometrical assessment of the foetal lumbar vertebral column — clinical implications. Folia Morphol, 63: 431–438.
  • 13. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H, Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual X-ray absorptiometry examinations. Osteoporos Int, 13: 716–722.
  • 14. De Schaepdrijver L, Delille P, Geys H, Boehringer-Shahidi C, Vanhove C (2014) In vivo longitudinal micro-CT study of bent long limb bones in rat offspring. Reprod Toxicol, 46: 91–97.
  • 15. Environmental Protection (1996). Guidelines for reproductive toxicity risk assessment. Fed Regist, 61: 56274–56322. http://www.epa.gov/raf/publications/pdfs/REPRO51.PDF. Accessed 22 June 2014.
  • 16. Firth EC, Rogers CW, Vickers M, Kenyon PR, Jenkinson CM, Blair HT, Johnson PL, Mackenzie DD, Peterson SW, Morris ST (2008) The bone-muscle ratio of fetal lambs is affected more by maternal nutrition during pregnancy than by maternal size. Am J Physiol Regul Integr Comp Physiol, 294: R1890–R18904.
  • 17. French JM (2014) Imaging and morphology in reproductive toxicology: progress to date and future directions. Reprod Toxicol, 48: 37–40.
  • 18. Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. (2004) Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today, 72: 250–259.
  • 19. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (1993) Detection of toxicity to reproduction for medical products and toxicity to male fertility. Parent Guideline dated 24 June 1993 (addendum dated 9 November 2000 incorporated in November 2005) http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html. Accessed 22 June, 2014.
  • 20. Kedzia A, Czyz M (2003) Ossification process and lumbar spine morphology in the prenatal period. Med Sci Monit, 9: BR343–BR350.
  • 21. Kimmel CA, Trammell C (1981) A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol, 56: 271–273.
  • 22. Martin RJ, Fanaroff AA, Walsh MC (2010) Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 9th Ed. Elsevier, St. Louis:.
  • 23. Menegola E, Broccia ML, Di Renzo F, Giavini E (2002) Comparative study of sodium valproate-induced skeletal malformations using single or double staining methods. Reprod Toxicol, 16: 815–823.
  • 24. Nakamoto T, Grant S, Yazdani M (1989) The effects of maternal caffeine intake during pregnancy on mineral contents of fetal rat bone. Res Exp Med (Berl), 189: 275–280.
  • 25. Oest ME, Jones JC, Hatfield C, Prater MR (2008) Micro-CT evaluation of murine fetal skeletal development yields greater morphometric precision over traditional clear-staining methods. Birth Defects Res B Dev Reprod Toxicol, 83: 582–589.
  • 26. Organization for Economic Co-operation and Development (1983). OECD guideline for testing of chemicals. www.oecd.org/dataoecd/18/12/1948458.pdf. Accessed 22, 2014.
  • 27. Reid IR (2002) Relationships among body mass, its components, and bone. Bone, 31: 547–555.
  • 28. Tomaszewski M, Olchowik G, Tomaszewska M, Burdan F (2012) Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration. Folia Histochem Cytobiol, 50: 436–443.
  • 29. Ward KA, Cotton J, Adams JE (2003) A technical and clinical evaluation of digital X-ray radiogrammetry. Osteoporos Int, 14: 389–395.
  • 30. Wise LD, Winkelmann CT (2009) Micro-computed tomography and alizarin red evaluations of boric acid-induced fetal skeletal changes in Sprague-Dawley rats. Birth Defects Res B Dev Reprod Toxicol, 86: 214–219.
  • 31. Wise LD, Xue D, Winkelmann CT (2010) Micro-computed tomographic evaluation of fetal skeletal changes induced by all-trans-retinoic acid in rats and rabbits. Birth Defects Res B Dev Reprod Toxicol, 89: 408–417.
  • 32. Yamada T (1991) Selective staining methods for cartilage of rat fetal specimens previously treated with alizarin red S. Teratology, 43: 615–619.
  • 33. Young AD, Phipps DE, Astroff AB (2000) Large-scale double-staining of rat fetal skeletons using alizarin Red S and alcian blue. Teratology, 61: 273–276.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-60b08644-6f2b-4818-9331-4af3d2f0dad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.