PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 1 |

Tytuł artykułu

Detection of Acinetobacter spp. in blood cultures by an improved fluorescent in situ hybridization assay

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fluorescent in situ hybridization (FISH) allows rapid detection of microorganisms. We aimed (i) to evaluate the sensitivity and specificity of FISH for the detection of Acinetobacter spp. in blood culture specimens and (ii) to test the simultaneous application of two genus-specific probes labeled with the same fluorochrome to increase the fluorescent signal intensity and improve the detection of Acinetobacter spp. Three hundred and twenty blood culture specimens were tested via both the conventional laboratory methods and FISH to detect Acinetobacter spp. The specimens were examined separately with each genus-specific probe Aci and ACA, and also using a mixture of the both probes Aci and ACA. In all examinations, probe EUB338 was used accompanied by Aci and ACA. The specificity of FISH was 100% (97.5% confidence interval [CI] = 98.7% – 100%). The sensitivity of FISH by the use of probe Aci was 96.4% (95% CI = 81.7% – 99.9%), whereas, the sensitivity of this technique by the use of probe ACA as well as by the combination of both probes Aci and ACA was 100% (97.5% CI = 87.7% – 100%). Moreover, simultaneous hybridization by probes Aci and ACA increased the fluorescent signal of Acinetobacter spp. cells to 3+ in 13 specimens. In conclusion, FISH, particularly using a combination of Aci and ACA, is a highly accurate method for the detection of Acinetobacter spp. in blood cultures. Furthermore, simultaneous hybridization by the both probes Aci and ACA can increase the fluorescent signal intensity of Acinetobacter spp. cells in some blood culture specimens and facilitate the detection of these microorganisms.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

1

Opis fizyczny

p.3-10,fig.,ref.

Twórcy

autor
  • Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
  • Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
autor
  • Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
  • The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
autor
  • Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
autor
  • Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
  • Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
  • Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
  • The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
  • Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
  • The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran

Bibliografia

  • Alaei N., M. Aziemzadeh and A. Bahador. 2016. Antimicrobial resistance profiles and genetic elements involved in carbapenem resistance in Acinetobacter baumannii isolates from a referral hospital in Southern Iran. J. Glob. Antimicrob. Resist. 5: 75–79.
  • Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919–1925.
  • Bazzi A.M., A.A. Rabaan, Z. El Edaily, S. John, M.M. Fawarah and J.A. Al-Tawfiq. 2017. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS. J. Infect. Public. Health. 10: 308–315.
  • Carroll K.C. and J.A. Hobden. 2016. Pseudomonas and Acinetobacter, pp. 245–251. In: Carroll K.C., J.S. Butel, S.A. Morse andT.A. Mietzner (eds). Jawetz, Melnick, & Adelberg’s Medical Microbiology. McGraw-Hill Education, New York.
  • Chen T.-L., Y.-T. Lee, S.-C. Kuo, S.-P. Yang, C.-P. Fung and S.-D. Lee. 2014. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay. J. Med. Microbiol. 63: 1154–1159.
  • Chen X., Y. Chen, Q. Yang, H. Kong, F. Yu, D. Han, S. Zheng,D. Cui and L. Li. 2013. Plesiomonas shigelloides infection in Southeast China. PloS one. 8: e77877.Acinetobacter, bacteremia, blood culture, FISH, simultaneous hybridization
  • Cheng W.C., I.S. Jan, J.M. Chen, S.H. Teng, L.J. Teng, W.H. Sheng, W.C. Ko and P.R. Hsueh. 2015. Evaluation of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of blood isolates of Vibrio species. J. Clin. Microbiol. 53: 1741–1744.
  • Choi H.K., Y.K. Kim, H.Y. Kim, J.E. Park and Y. Uh. 2015. Clinical and microbiological features of Providencia bacteremia: experience at a tertiary care hospital. Korean. J. Intern. Med. 30: 219–225.
  • Doughari H.J., P.A. Ndakidemi, I.S. Human and S. Benade. 2011. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 26: 101–112.
  • Endo S., H. Yano, H. Kanamori, S. Inomata, T. Aoyagi, M. Hatta, Y. Gu, K. Tokuda, M. Kitagawa and M. Kaku. 2014. High frequency of Acinetobacter soli among Acinetobacter isolates causing bacteremia at a tertiary hospital in Japan. J. Clin. Microbiol. 52: 911–915.
  • Frickmann H., A. Essig, R.M. Hagen, M. Riecker, K. Jerke, D. Ellison and S. Poppert. 2011. Rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH) from colony and blood culture material. Eur. J. Microbiol. Immunol. 1: 289–296.
  • Gu Z., Y. Han, T. Meng, S. Zhao, X. Zhao, C. Gao and W. Huang. 2016. Risk factors and clinical outcomes for patients with Acinetobacter baumannii bacteremia. Medicine. 95: e2943.
  • Hall G.S. 2015. Nonfermenting and miscellaneous Gram-negative bacilli, pp. 474–494. In: Mahon C.R., D.C. Lehman and G. Manuselis (eds). Textbook of Diagnostic Microbiology. Saunders Elsevier Maryland Heights, Missouri.
  • Hochedez P., E. Hope-Rapp, C. Olive, M. Nicolas, G. Beaucaire and A. Cabié. 2010. Bacteremia caused by Aeromonas species (corrected) complex in the Caribbean Islands of Martinique and Guadeloupe. Am. J. Trop. Med. Hyg. 83: 1123–1127.
  • Hogardt M., K. Trebesius, A.M. Geiger, M. Hornef, J. Rosenecker and J. Heesemann. 2000. Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J. Clin. Microbiol. 38: 818–825.
  • Janda J.M. and S.L. Abbott. 2014. The genus Shewanella: fromthe briny depths below to human pathogen. Crit. Rev. Microbiol. 40: 293–312.
  • Lee S., C. Malone and P.F. Kemp. 1993. Use of multiple 16S rRNA-targeted fluorescent-probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol. Prog. Ser. 101: 193–201.
  • Moosavian M., S. Tajbakhsh and A.R. Samarbaf-Zadeh. 2007. Rapid detection of clarithromycin-resistant Helicobacter pylori in patients with dyspepsia by fluorescent in situ hybridization (FISH) compared with the E-test. Ann. Saudi. Med. 27: 84–88.
  • Moter A. and U.B. Göbel. 2000. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods. 41: 85–112.
  • Munson E.L., D.J. Diekema, S.E. Beekmann, K.C. Chapin and G.V. Doern. 2003. Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J. Clin. Microbiol. 41: 495–497.
  • Peleg A.Y., Y. Tilahun, M.J. Fiandaca, E.M. D’Agata, L. Venkataraman, R.C. Moellering, Jr. and G.M. Eliopoulos. 2009. Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J. Clin. Microbiol. 47: 830–832.
  • Peters R.P., P.H. Savelkoul, A.M. Simoons-Smit, S.A. Danner, C.M. Vandenbroucke-Grauls and M.A. van Agtmael. 2006. Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J. Clin. Microbiol. 44: 119–123.
  • Phillips M. 2015. Acinetobacter species, pp. 2552–2558. In: Bennett J.E., R. Dolin and M.J. Blaser (eds). Mandell, Douglas, andAcinetobacter, bacteremia, blood culture, FISH, simultaneous hybridizationBennett’s Principles and Practice of Infectious Diseases. Elsevier Saunders, Philadelphia.
  • Poppert S., M. Riecker and A. Essig. 2010. Rapid identification of Propionibacterium acnes from blood cultures by fluorescence in situ hybridization. Diagn. Microbiol. Infect. Dis. 66: 214–216.
  • Tajbakhsh S., S. Gharibi, K. Zandi and R. Yaghobi. 2013a. Use of a modified fluorescent in situ hybridization procedure to improve the identification of Streptococcus pneumoniae in blood cultures. Acta. Microbiol. Immunol. Hung. 60: 303–311.
  • Tajbakhsh S., S. Gharibi, K. Zandi, R. Yaghobi and G. Asayesh. 2011. Rapid detection of Streptococcus pyogenes in throat swab specimens by fluorescent in situ hybridization. Eur. Rev. Med. Pharmacol. Sci. 15: 313–317.
  • Tajbakhsh S., M. Hogardt, J. Heesemann, C. Grzonka and K. Adler.2008. Detection of Pseudomonas aeruginosa in sputum samples by modified fluorescent in situ hybridization. Afr. J. Biotechnol. 7: 553–556.
  • Tajbakhsh S., M. Norouzi Esfahani, M. Emaneini, N. Motamed, E. Rahmani and S. Gharibi. 2013b. Identification of Streptococcus Acinetobacter, bacteremia, blood culture, FISH, simultaneous hybridizationagalactiae by fluorescent in situ hybridization compared to culturing and the determination of prevalence of Streptococcus agalactiae colonization among pregnant women in Bushehr, Iran. BMC. Infect. Dis. 13: 420.
  • Wagner M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wediand K.H. Schleifer. 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792–800.
  • Wellinghausen N., K. Nöckler, A. Sigge, M. Bartel, A. Essig andS. Poppert. 2006. Rapid detection of Brucella spp. in blood cultures byfluorescence in situ hybridization. J. Clin. Microbiol. 44: 1828–1830.
  • Wong E.H., G. Subramaniam, P. Navaratnam and S.D. Sekaran. 2007. Rapid detection of non-enterobacteriaceae directly from positive blood culture using fluorescent in situ hybridization. Indian.J. Med. Microbiol. 25: 391–394.
  • Zwirglmaier K. 2005. Fluorescence in situ hybridisation (FISH)– the next generation. FEMS. Microbiol. Lett. 246: 151–158.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6086df93-4aa7-4d25-ac7c-67e84dc26c6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.