PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 | 2 |

Tytuł artykułu

The biology behind the human intervertebral disc and its endplates

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The intervertebral discs (IVDs) are roughly cylindrical, fibrocartilaginous, articulating structures connecting the vertebral bodies, and allowing movement in the otherwise rigid anterior portion of the vertebral column. They also transfer loads and dissipate energy. Macroscopically the intervertebral disc can be divided into an outer annulus fibrosus surrounding a centrally located nucleus pulposus. The endplates surround the IVD from both the cranial and caudal ends, and separate them from the vertebral bodies and prevent the highly hydrated nucleus pulposus from bulging into the adjacent vertebrae. The IVD develop from the mesodermal notochord and receive nutrients mostly through the cartilaginous endplates. Physiologically they are innervated only in the outer annulus fibrosus by sensory and sympathetic perivascular nerve fibres, branches from the sinuvertebral nerve, the ventral rami of spinal nerves or from the grey rami communicantes. The IVD undergo changes with ageing and degeneration, the latter having two types i.e. “endplate-driven” involving endplate defects and inward collapse of the annulus fibrosus and “annulus-driven” involving a radial fissure and/or an IVD prolapse. This review summarises and updates the current state of knowledge on the embryology, structure, and biomechanics of the IVD and its endplates. To further translate this into a more clinical context this review also demonstrates the impact of ageing and degeneration on the above properties of both the IVD and its endplates. (Folia Morphol 2015; 74, 2: 157–168)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Numer

2

Opis fizyczny

p.157-168,fig.,ref.

Twórcy

  • Department of Anatomy, Jagiellonian University Medical College, Kopernika 12, 31-034 Krakow, Poland
autor
  • Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
  • Department of Oral Surgery, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland

Bibliografia

  • 1. Adams MA, Dolan P (2012) Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat, 221: 497–506.
  • 2. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine, 25: 1625–1636.
  • 3. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br, 78: 965–972.
  • 4. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976), 31: 2151–2161.
  • 5. Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV (2007) Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol, 293: 621–631.
  • 6. Aigner T, Gresk-otter KR, Fairbank JC, von der Mark K, Urban JP (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int, 63: 263–268.
  • 7. Antoniou J, Arlet V, Goswami T, Aebi M, Alini M (2001) Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues. Spine, 26: 198–206.
  • 8. Aoki Y, Ohtori S, Takahashi K, Ino H, Takahashi Y, Chiba T, Moriya H (2004) Innervation of the lumbar intervertebral disc by nerve growth factor-dependent neurons related to inflammatory pain. Spine, 29: 1077–1081.
  • 9. Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J, Cell Biol, 143, 1399–1412.
  • 10. Barrionuevo F, Taketo MM, Scherer G, Kispert A (2006) Sox9 is required for notochord maintenance in mice. Dev Biol, 295: 128–140.
  • 11. Battie MC, Videman T, Parent E (2004) Lumbar disc degeneration: epidemiology and genetic influences. Spine, 29: 2679–2690.
  • 12. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila Pa 1976), 30: 167–173.
  • 13. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine, 27: 2631–2644.
  • 14. Broberg KB (1983) On the mechanical behaviour of intervertebral discs. Spine, 8: 151–165.
  • 15. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine, 20: 1307–1314.
  • 16. Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat, 11: 171–176.
  • 17. Chelberg MK, Banks GM, Geiger DF, Oegema TR Jr (1995) Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat, 186: 43–53.
  • 18. Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn, 237: 3953–3958.
  • 19. Colombier P, Clouet J, Hamel O, Lescaudron L, Guicheux J (2014) The lumbar intervertebral disc: from embryonic development to degeneration. Joint Bone Spine, 81: 125–129.
  • 20. Coppes MH, Marani E, Thomeer RT, Groen GJ (1997) Innervation of “painful” lumbar discs. Spine, 22: 2342–2349.
  • 21. Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the verterbal end-plate in adult greyhound dogs, Spine, 9: 702–706.
  • 22. DiPaola CP, Farmer JC, Manova K, Niswander LA (2005) Molecular signaling in intervertebral disk development. J Orthop Res. 23: 1112–1119.
  • 23. Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine 23: 2545–2551.
  • 24. Ehlen HW, Buelens LA, Vortkamp A (2006). Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today, 78: 267–279.
  • 25. Errington RJ, Puustjarvi K, White IR, Roberts S, Urban JP (1998) Characterisation of cytoplasm-filled processes in cells of the intervertebral disc. J Anat, 192: 369–378.
  • 26. Erwin WM, Islam D, Inman RD, Fehlings MG, Tsui FW (2011) Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther, 13: R215.
  • 27. Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech (Bristol, Avon), 12: S1–S63.
  • 28. Frost V, Grocott T, Eccles MR, Chantry A (2008) Self-regulated Pax gene expression and modulation by the TGFbeta superfamily. Crit Rev Biochem Mol Biol, 43: 371–391.
  • 29. García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA (2010) Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat, 217: 1–15.
  • 30. Groen GJ, Baljet B, Drukker J (1990) Nerves and nerve plexuses of the human vertebral column. Am J Anat, 188: 282–296.
  • 31. Grunhagen T, Wilde G, Soukane DM, Shirazi-Adl SA, Urban JP (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg, 88: 30–35.
  • 32. Guerin HL, Elliott DM (2007) Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res, 25: 508–516.
  • 33. Hassett G, Hart DJ, Manek NJ, Doyle DV, Spector TD (2003) Risk factors for progression of lumbar spine disc degeneration: the Chingford Study. Arthritis Rheum, 48: 3112–3117.
  • 34. Hayes AJ, Benjamin M, Ralphs JR (1999) Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn, 215: 179–189.
  • 35. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res, 8: 101–119.
  • 36. Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine, 26: 2543–2549.
  • 37. Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng, 9: 667–677.
  • 38. Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine, 6: 139–146.
  • 39. Kawaguchi Y, Osada R, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (1999) Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine, 24, 2456–2460.
  • 40. Kokubo Y, Uchida K, Kobayashi S, Yayama T, Sato R, Nakajima H, Takamura T, Mwaka E, Orwotho N, Bangirana A, Baba H (2008) Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. Laboratory investigation. J Neurosurg Spine, 9: 285–295.
  • 41. Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N (2011) Age-related variation in cell density of human lumbar intervertebral disc. Spine (Phila Pa 1976), 36: 153–159.
  • 42. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine, 15: 402–410.
  • 43. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev, 12: 1438–1452.
  • 44. Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine, 27: 1278–1285.
  • 45. Melrose J, Smith SM, Appleyard RC, Little CB (2008) Aggrecan: versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J, 17: 314–324.
  • 46. Millan FA, Denhez F, Kondaiah P, Akhurst RJ (1991) Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development, 111: 131–143.
  • 47. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum, 62: 3695–3705.
  • 48. Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J, Suppl 3: S333–S337.
  • 49. Nachemson A, Lewin T, Maroudas A, Freeman MAR (1970) In vitro diffusion of dye through the endplate and the annulus fibrosus of human intervertebral discs. Acta Orthop Scand, 41: 589–607.
  • 50. Nerlich AG, Schaaf R, Walchli B, Boos N (2007) Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J, 16: 547–555.
  • 51. O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine, 32: 2860–2868.
  • 52. Oda J, Tanaka H, Tsuzuki N (1988) Intervertebral disc changes with aging of human cervical vertebra from the neonate to the eighties. Spine, 13: 1205–1211.
  • 53. Oki S, Matsuda Y, Shibata T, Okumura H, Desaki J (1996) Morphologic differences of the vascular buds in the vertebral endplate-scanning electron microscopic study. Spine, 21: 174–177.
  • 54. Paassilta P, Lohiniva J, Göring HH, Perälä M, Räinä SS, Karppinen J, Hakala M, Palm T, Kröger H, Kaitila I, Vanharanta H, Ott J, Ala-Kokko L (2001) Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285: 1843–1849.
  • 55. Palmgren T, Grönblad M, Virri J, Kääpä E, Karaharju E (1999) An immunohistochemical study of nerve structures in the annulus fibrosus of human normal lumbar intervertebral discs. Spine, 24: 2075–2079.
  • 56. Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human intervertebral disc. J Orthop Res, 5: 198–205.
  • 57. Pederson HE, Blunck CFJ, Gardner E (1956) The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerves (sinu-vertebral nerves): with an experimental study of their functions. J Bone Joint Surg Am 38-A: 377–391.
  • 58. Pelton RW, Dickinson ME, Moses HL, Hogan BL (1990) In situ hybridization analysis of TGF beta 3 RNA expression during mouse development: comparative studies with TGF beta 1 and beta 2. Development, 110: 609–620.
  • 59. Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development, 126: 5399–5408.
  • 60. Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract, 8: 18–44.
  • 61. Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM (2002) Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res, 308: 401–407.
  • 62. Roberts S, Eisenstein SM, Menage J, Evans EH, Ashton IK (1995) Mechanoreceptors in intervertebral discs. Spine, 20: 2645–2651.
  • 63. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am, 88: 10–14.
  • 64. Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine, 14, 166–174.
  • 65. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine, 21: 415–420.
  • 66. Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: Involvement of the extracellular matrix. Spine, 29: 2691–2699.
  • 67. Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun, 3: 1264.
  • 68. Schepers GE, Teasdale RD, Koopman P (2002) Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell, 3: 167–170.
  • 69. Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ (2007) Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine, 32: 748–755.
  • 70. Shine KM, Simson JA, Spector M (2009) Lubricin distribution in the human intervertebral disc. J Bone Joint Surg Am, 91: 2205–2212.
  • 71. Skórzewska A, Grzymisławska M, Bruska M, Lupicka J, Woźniak W (2013) Ossification of the vertebral column in human foetuses: histological and computed tomography studies. Folia Morphol, 72: 230–238.
  • 72. Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech, 4: 31–41.
  • 73. Smith CA, Tuan RS (1994) Human PAX gene expression and development of the vertebral column. Clin Orthop Relat Res, 302: 241–250.
  • 74. Smits P, Lefebvre V (2003) Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development, 130: 1135–1148.
  • 75. Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development, 132: 2503–2512.
  • 76. Suseki K, Takahashi Y, Takahashi K, Chiba T, Yamagata M, Moriya H (1998) Sensory nerve fibers from lumbar intervertebral discs pass through rami communicantes. J Bone Joint Surg, 80-B: 737–742.
  • 77. Takahasi Y, Ohtori S, Takahashi K (2009) Peripheral nerve pathways of afferent fibers innervating the lumbar spine in rats. J Pain, 10: 416–425.
  • 78. Taylor JR, Twomey LT (1988) Growth of human intervertebral discs and vertebral bodies. J Anat, 120: 49–68.
  • 79. Tomaszewski KA, Adamek D, Konopka T, Tomaszewska R, Walocha JA (2015) Endplate calcification and cervical intervertebral disc degeneration — the role of endplate marrow contact channel occlusion. Folia Morphol, 74: 84–92.
  • 80. Tomaszewski KA, Adamek D, Pasternak A, Głowacki R, Tomaszewska R, Walocha JA (2014) Degeneration and calcification of the cervical endplate is connected with a decreased expression of ANK, ENPP-1, OPN and TGF-β1 in the intervertebral disc. Pol J Pathol, 65: 204–211.
  • 81. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther, 5: 120–130.
  • 82. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976), 29: 2700–2709.
  • 83. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem, 275: 39027–39031.
  • 84. Videman T, Gibbons LE, Battié MC, Maravilla K, Vanninen E, Leppävuori J, Kaprio J, Peltonen L (2001) The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine, 26: E7–E12.
  • 85. Vresilovic EJ, Johannessen W, Elliott DM (2006) Disc mechanics with transendplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. J Biomech Eng, 128: 823–829.
  • 86. Wallace AL, Wyatt BC, McCarthy ID, Hughes SPF (1994) Humoral regulation of blood flow in the vertebral endplate. Spine, 19: 1324–1328.
  • 87. Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo), 124: 687–693.
  • 88. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) SSE Award Competition in Basic Sciences: expression of major matrix metalloproteinases is associated with intervertebral disc degeneration and resorption. Eur Spine J, 11: 308–320.
  • 89. Whalen JL, Parke WW, Mazur JM, Stauffer ES (1985) The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop, 5: 403–410.
  • 90. Wiberg G (1947) Back pain in relation to the nerve supply of the intervertebral discs. Acta Orthop Scand, 19: 211–221.
  • 91. Yu J, Fairbank JC, Roberts S, Urban JP (2005) The elastic fibre network of the annulus fibrosus of the normal and scoliotic human intervertebral disc. Spine, 30: 1815–1820.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5eff3f5e-3b55-4e3f-991a-c2529bc401b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.