PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 54 | 2 |

Tytuł artykułu

Protein expression after NaCl treatment in two tomato cultivars differing in salt tolerance

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
SDS-PAGE electrophoresis was used to study the effect of NaCl on protein expression in two cultivars of tomato (Solanum lycopersicum L.): Edkawi (salt-tolerant) and Castle rock (salt-sensitive). Five-day-old seedlings were grown on MS agar media supplemented with 0, 50, 100, 150, 200 and 300 mM NaCl. Two days after treatment the seedlings were examined to determine the effect of salt on their growth and to relate that to protein banding variations. Gel analysis showed differences in at least 4 protein bands with molecular weights at 20, 25, 45 and 65 kDa. These proteins were induced in the 50 mM NaCl treatment in the salt-sensitive cultivar, then decreasing to undetectability at higher concentrations. In the salt-tolerant cultivar, most of the proteins exhibited a more or less steady expression pattern and maintained expression through the 200 mM NaCl treatment. All proteins gave weak or no expression signals at 300 mM NaCl, the treatment that proved lethal. Differentially expressed bands were identified using MALDI-TOF mass spectrometry. The putative function of each identified protein in relation to salt stress is discussed.

Wydawca

-

Rocznik

Tom

54

Numer

2

Opis fizyczny

p.79-86,fig.,ref.

Twórcy

autor
  • Botany Department, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt

Bibliografia

  • AMINI F, and EHSANPOUR AA. 2005. Soluble protein, praline, carbohydrates and N+/K+ changes two tomato(Lycopersicum esculentum Mill.) cultivars under in vitrosalt stress. American Journal of Biochemistry andBiotechnology 1(4): 212–216.
  • ASHRAF M. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences 13: 17–42.
  • ASHRAF M, and O'LEARY JW. 1996. Responses of newly developed salt-tolerant genotype of spring wheat to salt stress:yield components and ion distribution. Agronomy. CropScience 176: 91–101.
  • ASHRAF M, and HARRIS P. 2004. Potential biochemical indicators of salinity tolerance in plant. Plant Science 166:3–16.
  • BABOUL`ENE L. 2003. Approche fonctionnelle et biomol´eculaire de la carence en Ca chez la tomate, Thesis INPToulouse Fr, 128 p.
  • BARKAN A, WALKER M, NOLASCO M, and JOHNSON D. 1994. A nuclear mutation in maize blocks the processing andtranslation of several chloroplast mRNAs and providesevidence for the differential translation of alternativemRNA forms. EMBO Journal 13: 3170–81.
  • BERNSTEIN KA, GALLAGHER JEG, MITCHELL BM, GRANNEMAN S, and BASERGA SJ. 2004. The small subunit processome isa ribosome assembly intermediate. Eukaryote Cell 3:1619–1626.
  • BLUMWALD E. 2000. Sodium transport and salt tolerance in plants. Current Opinions in Cell Biology 12: 431–434.
  • BRAY EA, BAILEY-SERRES J, and WERETILNYK E. 2000. Responses to abiotic stresses. In: Gruissem W,Buchannan B, Jones R [eds.], Biochemistry and Molecular Biology of Plants, 1158–1249. AmericanSociety of Plant Physiologists, Rockville, U.S.A.
  • CHATTOPADHYAY A, SUBBA P, PANDEY A, BHUSHAN D, KUMAR R, DATTA A, CHAKRABORTY S, and CHAKRABORTY N. 2011.Analysis of the grass pea proteome and identification ofstress-responsive proteins upon exposure to high salinity,low temperature, and abscisic acid treatment.Phytochemistry. 72: 1293–1307.84 Khalifa
  • CHO W. 2007. Proteomics technologies and challenges. Genome Proteome Bioinformatics 5: 77–84.
  • CZECHOWSKI M, ALTMANN T, UDVARDI M, and SCHEIBLE W. 2005. Genome-wide identification and testing of superior referencegenes for transcript normalization in Arabidopsis.Plant Physiology 139: 5–17.
  • DELANNOY E, STANLEY W, BOND C, and SMALL I. 2007. Pentatricopeptide repeat (PPR) proteins as sequencespecificityfactors in post-transcriptional processes inorganelles. Biochemical Social Transformation 35:1643–1647.
  • DE LORENZO L, MERCHAN M, BLANCHET S, MEGÍAS M, FRUGIER F, CRESPI M, and SOUSA C. 2007. Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiology 145: 1521–1532.
  • FELLER U, ANDERS I, and MAE T. 2008. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated.Journal of Experimental Botany 59: 1615–1624.
  • HARVEY SH, KRIEN MJ, and O'CONNEL M J. 2003. Structural maintenance of chromosomes (SMC) proteins, a familyof conserved ATPases. Genome Biology Reviews 3(2):3003.1–3003.5.
  • HOLWEG C, and NICK P, 2004. Arabidopsis myosin XI mutant is defective in organelle movement and polar auxintransport. Practical National Academic Science 101:10488–10493.
  • HURKMAN WJ, FORNARI CS, and TANAKA CK. 1989. A comparison of the effect of salt on polypeptides and translatablemRNAs in roots of a salt-tolerant and a saltsensitivecultivar of barley. Plant Physiology 90(4):1444–1456.
  • JIMENEZ C, HUANG L, QIU Y, and BURLINGAME A. 1998. Current Protocols in Protein Science, 1–16. John Wiley & Sons,Inc., New York, U.S.A.
  • KAFKAFI U, and BERNSTEIN N. 1996. Root Growth under Salinity Stress, Plant Roots – the Hidden Half, 463–499.Marcel Dekker, New York, U.S.A.
  • KERRI B, PETA M, and SMITH C. 2006. Ribosomal protein gene regulation: what about plants? Canadian Journal ofBotany 84: 342–362.
  • KHOSRAVINEGAD F, HEYDARI R, and FARBOODNIA T. 2009. Effect of salinity on organic solutes contents in barely. PakistanJournal of Biological Science 12: 158–162.
  • KONG-NGERN K, DADUANG C, WONGKHAM S, BUNNAG M, and KOSITTRAKUN P. 2005. Protein profiles in response to saltstress in leaf sheaths of rice seedlings. Science Asia 31:403–408.
  • LAEMMLI U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • MANTHEY G, and MCEWEN J. 1995. The product of the nuclear gene PET309 is required for translation of mature mRNAand stability or production of intron-containing RNAsderived from the mitochondrial COX1 locus ofSaccharomyces cerevisiae. EMBO Journal 14:4031–4043.
  • MASSARI M, and MURRE C. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms.Molecular Cell Biololgy 20: 429–440.
  • MEIERHOFF K, FELDER S, NAKAMURA T, BECHTOLD N, and SCHUSTER G. 2003. HCF152, an Arabidopsis RNA bindingpentatricopeptide repeat protein involved in the processingof chloroplast psbB-psbT-psbH-petB-petD RNAs.Plant Cell 15: 1480–1495.
  • MILLI S, and ROMA S. 2003. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Molecular Cell Biololgy 23: 4972–4982.
  • MUNNS R. 1993. Physiological processes limiting plant-growth in saline soils-some dogmas and hypotheses. Plant CellEnvironment 16: 15–24.
  • MURASHIGE T, and SKOOG F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. PlantPhysiology 15: 473–497.
  • NAKAMURA T, SCHUSTER G, SUGIURA M, SUGITA M. 2004. Chloroplast RNA-binding and pentatricopeptide repeatproteins. Biochemical Society Transactions 32: 571–574.
  • PAREEK A, SINGLA S, and GROVER A. 1997. Salt Responsive Proteins/Genes in Crop Plants, Strategies for ImprovingSalt Tolerance in Higher Plants, 365–391. Oxford andIBH, New Delhi, India.
  • PHILIMONENKO V, JANEK J, HARATA M, and HOZK P. 2010. Transcription-dependent rearrangements of actin andnuclear myosin I in the nucleolus. Histochemical CellBiology 134: 243–249.
  • RANI R. 2011. Salt stress tolerance and stress proteins in pearl millet [Pennisetum glaucum ((L.) R. Br.]. Journal ofApplied Pharmceutical Science 10: 185–188.
  • RAQUEL L, CAMARGO B, BERGER J, SOUZA A, AMARAL M, CARLOS F, FREITAS J, TAKITA, LUISA M, TARGON N, MEDINA L, REIS S,and MACHADO A. 2007. In silico analysis of ESTs fromroots of Rangpur lime (Citrus limonia Osbeck) underwater stress. Genetics and Molecular Biology 30:906–916.
  • SAIRAM R, and TYAGI A. 2004. Physiological and molecular biology of salinity stress tolerance in plants. CurrentScience 86: 407–420.
  • SARHAN F, and PERRAS M. 1987. Accumulation of a high molecular weight protein during cold hardening of wheat(Triticum aestivum L.). Plant Cell Physiology 28:1173–1179.
  • SEKI M, KAMEI A, YAMAGUCHI K, and SHINOZAK K. 2003. Molecular responses to drought, salinity and frost: commonand different paths for plant protection. CurrentOpinion in Biotechnology 14: 194–199.
  • SHANKLIN J, DEWITT D, and FLANAGAN M. 1995. The stroma of higher plant plastids contain ClpP and ClpC, functionalhomologues of Escherichia coli ClpP and ClpA andarchetypal two component ATP-dependent protease.Plant Cell 7: 1713–1722.
  • SOTTOSANTO J, SARANGA Y, and BLUMWALD E. 2007. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biology 7: 18–25.
  • THOENEN M, HERRMANN B, and FELLER U. 2007. Senescence in wheat leaves: is a cysteine endopeptidase involved in thedegradation of the large subunit of Rubisco? ActaPhysiologia Plantarum 29: 339–350.
  • TSUKAYA H, IOKAWA Y, KONDO M, and OHBA H. 2005. Largescale general collection of wild-plant DNA in Mustang,Nepal. Journal of Plant Research 118: 57–60.
  • VIERSTRA R. 1996. Proteolysis in plants: mechanisms and functions. Plant Molecular Biology 32: 275–302.
  • WINICOV, I. 1998. New Molecular approaches to improving salt tolerance in crop plants. Annals of Botany 82: 703–710.
  • YOKOTA E, MCDONALD A, LIU R, and SHIMMEN B. 1995. Localization of a 170 kDa myosin heavy chain in plantcells. Protoplasma 185: 178–187.
  • ZIEMIENOWICZ A, RAHAVI SM, and KOVALCHUK I. 2011. The stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotidecofactor and buffer pH. BMB Reports 341–346.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5e42d2e4-afc2-4292-8b3a-48bf2fa4d16f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.