PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 2 |

Tytuł artykułu

Factors affecting foraging activity of pipistrelle bats (Chiroptera: Vespertilionidae) on the Islands of Malta

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the Mediterranean region, aquatic and riparian habitats are considered amongst the most important for bat survival. These habitats are transient in the Maltese Islands and detailed research on how different bat species cope in these conditions has not been conducted. This paper presents results on the activity of pipistrelle bats across different habitats and seasons using acoustic methods to investigate their foraging habitats in the Maltese landscapes. Regression tree analysis was used to assess the effects of several environmental variables — including climatic conditions, vegetation characteristics, and prey abundance — on foraging activity. Echolocation recordings from pipistrelle bats were obtained during 220 hours of active monitoring between summer 2012 and spring 2013. During each sampling period, a maximum of 36 sites were visited (summer, n = 36; autumn: n = 33; spring: n = 35). Agricultural landscapes, cliffs, shrublands, urban areas, woodland patches, and valleys were all represented by these study sites. Detailed analyses of echolocation calls revealed the presence of two pipistrelle species, Pipistrellus pipistrellus and P. kuhlii. The former was more frequently encountered, comprising 55% of the total echolocation recordings. Pipistrellus kuhlii showed significant seasonality in foraging activity overall (Kruskal-Wallis H(2) = 13.83, P < 0.01) and within each habitat (all P-values < 0.01). Pipistrellus pipistrellus showed seasonality over agricultural land (ANOVA F2, 14 = 4.13, P < 0.05). Differential habitat use by these two species during summer was revealed where P. pipistrellus showed higher activity levels over agricultural sites, while P. kuhlii showed higher activity over woodland patches. Regression tree analyses indicate insect abundance, maximum temperature, and minimum distance to an urban area to affect foraging activity of P. kuhlii, while minimum wind speed, minimum distance to an urban area, and average canopy height were found to affect the foraging activity of P. pipistrellus. Both species were found to cope with conditions found in the Maltese Islands by using an optimal foraging scheme, wherein they seasonally alternate between selective and opportunistic foraging strategies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.337-346,fig.,ref.

Twórcy

autor
  • Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
autor
  • Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta

Bibliografia

  • 1. I. Ahlén , and H. Baagøe . 1999. Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterologica, 1: 137–150. Google Scholar
  • 2. G. H. Alvarez , J. E. Herrick , M. Mattocks , D. Toledo , and J. Van Zee . 2009. Comparison of three vegetation monitoring methods: their relative utility for ecological assessment and monitoring. Ecological Indicators, 9: 1001–1008. Google Scholar
  • 3. L. Ancillotto , J. Rydell , V. Nardone , and D. Russo . 2014. Coastal cliffs on islands as foraging habitat for bats. Acta Chiropterologica, 16: 103–108. Google Scholar
  • 4. R. Arlettaz , S. Godat , and H. Meyer . 2000. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93: 55–60. Google Scholar
  • 5. R. Avila-Flores , and M. Fenton . 2005. Use of spatial features by foraging insectivorous bats in a large urban landscape. Journal of Mammalogy, 86: 1193–1204. Google Scholar
  • 6. A. E. Baldacchino , and P. J. Schembri . 2002. Amfibji, rettili, u mammiferi fil-gżejjer Maltin. [Amphibians, reptilies and mammals in the Maltese Islands]. Sensiela Kullana Kulturali, Nru. 39. Pubblikazzjonijiet Indipendenza, Pieta, Malta. [In Maltese]. Google Scholar
  • 7. K. E. Barlow , and G. Jones . 1997a. Differences in song flight calls and social calls between two phonic types of the vespertilionid bat, Pipistrellus pipistrellus. Journal of Zoology (London), 241: 315–324. Google Scholar
  • 8. K. E. Barlow , and G. Jones . 1997b. Function of pipistrelle social calls: field data and a playback experiment. Animal Behaviour, 53: 991–999. Google Scholar
  • 9. J. J. Borg , M. Fiore , C. Violani , and B. Zava . 1990. Observations on the Chiropterofauna of Gozo, Maltese islands. Bollettino del Museo Regionale di Scienze Naturali, Torino, 8: 501–515. Google Scholar
  • 10. J. J. Borg , C. Violani , and B. Zava . 1997. The bat fauna of the Maltese Islands. Myotis, 35: 49–65. Google Scholar
  • 11. C. I. Canale , and P. Y. Henry . 2010. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Climate Research, 43: 135–147. Google Scholar
  • 12. L. F. Cassar , E. Conrad , and P. J. Schembri . 2008. The Maltese archipelago. Pp. 297–322, in Mediterranean island land scapes: natural and cultural approaches ( I. N. Vogiatzakis , G. Pungetti , and A. M. Mannion , eds.). Springer, Heidel berg, Germany, xxxii + 369 pp. Google Scholar
  • 13. C. M. Davy , D. Russo , and M. B. Fenton . 2007. Use of native woodlands and traditional olive groves by foraging bats on a Mediterranean island: consequences for conservation. Jour nal of Zoology (London), 273: 397–405. Google Scholar
  • 14. I. Di Salvo , D. Russo , and M. Sara' . 2009. Habitat preferences of bats in a rural area of Sicily determined by acoustic surveys. Hystrix, the Italian Journal of Mammalogy, 20: 137–146. Google Scholar
  • 15. O. J. Dunn 1964. Multiple comparisons using the rank sums. Technometrics, 6: 241–252. Google Scholar
  • 16. EEA. 2006. Malta. Retrieved November 9, 2013, from European Environment Agency. Available at: http://www.eea.europa.eu/data-and-maps/figures/corine-land-cover-2006-by-country/malta. Google Scholar
  • 17. K. Falzon 1999. Biological analyses of pipistrelles (Pipistrellus spp.) for conservation. B.Sc. Dissertation, University of Malta, Msida, Malta, 115 pp. Google Scholar
  • 18. J. Fischer , J. Stott , B. S. Law , M. D. Adams , and R. I. Forrester . 2009. Designing effective habitat studies: quantifying multiple sources of variability in bat activity. Acta Chiro pterologica, 11: 127–137. Google Scholar
  • 19. W. M. Ford , M. A. Menzel , J. L. Rodrigue , J. M. Menzel , and J. B. Johnson . 2005. Relating bat species presence to simple habitat measures in a central Appalachian forest. Biological Conservation, 126: 528–539. Google Scholar
  • 20. D. A. Friess , E. P. Kudavidanage , and E. L. Webb . 2011. The digital globe is our oyster. Frontiers in Ecology and the En vironment, 9: 542–542. Google Scholar
  • 21. P. Georgiakakis , and D. Russo . 2012. The distinctive structure of social calls by Hanak's dwarf bat Pipistrellus hanaki. Acta Chiropterologica, 14: 167–174. Google Scholar
  • 22. U. Goiti , P. Vecin , I. Garin , M. Salona , and J. R. Aihartza . 2003. Diet and prey selection in Kuhl's pipistrelle Pipi strellus kuhlii (Chiroptera: Vespertilionidae) in south-western Europe. Acta Theriologica, 48: 457–468. Google Scholar
  • 23. A. Gordon , G. Glazko , X. Qiu , and A. Yakovlev . 2007. Control of the mean number of false discoveries, Bonferroni and stability of multiple testing. Annals of Applied Sta tistics, 1: 179–190. Google Scholar
  • 24. G. Gulia 1890. Il naturalista Maltese. [The Maltese naturalist]. Rivista di Scienze Na tu rali, 1: 2. [In Italian with English summary]. Google Scholar
  • 25. G. Gulia 1914. Uno sguardo alla zoologia delle ‘Isole Maltesi’. [A look at the zoology of the Maltese Islands]. Congres International de Zoologie, 9: 545–555 [In Italian with English summary]. Google Scholar
  • 26. S. M. Haslam , and J. Borg . 1998. The river valleys of the Maltese islands: environment and human impact. Islands and Small States Institute of the Foundation for International Studies, Malta and CIHEAM, Bari, Italy, xviii + 330 pp. Google Scholar
  • 27. J. P. Hayes 1997. Temporal variation in activity of bats and the design of echolocation-monitoring studies. Journal of Mammalogy, 78: 514–524. Google Scholar
  • 28. S. B. Jennings , N. D. Brown , and D. Sheil . 1998. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72: 58–73. Google Scholar
  • 29. C. Jones 1999. Distribution and abundance of bat species in Malta: implications for their conservation. B.Sc. Dissertation, University of Malta, Msida, Malta, 111 pp. Google Scholar
  • 30. E. K. Kalko , and H.-U. Schnitzler . 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioural Ecology and Sociobiology, 33: 415–428. Google Scholar
  • 31. T. H. Kunz 1988. Methods of assessing the availability of prey to insectivorous bats. Pp. 191–210, in Ecological and behavioural methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington, D.C., 920 pp. Google Scholar
  • 32. J. Kusch , C. Weber , S. Idelberger , and T. Koob . 2004. Forag ing habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. International Journal of Vertebrate Zoology, 53: 113–128. Google Scholar
  • 33. G. Lanfranco 1969. Maltese mammals. Central Mediterranean. Progress Press, Malta, 28 pp + 8 plates. Google Scholar
  • 34. B. Lanza 1959. Chiroptera Blumenbach, 1777. Pp. 187–473, in Fauna d'Italia. Vol. IV, Mammalia, Generalità — Insectivora — Chiroptera ( A. Toschi and B. Lanza ). Calderini, Bologna, viii + 485 pp. Google Scholar
  • 35. P. Legendre , and L. Legendre . 1998. Numerical ecology. Elsevier, Amsterdam, 1006 pp. Google Scholar
  • 36. R. Leverett 2010. Measuring tree height by tape and clinometer scenarios. Bulletin of the Eastern Native Tree Society, 5: 3–12. Google Scholar
  • 37. F. Lisón , and J. F. Calvo . 2011. The significance of water infrastructure for the conservation of bats in a semiarid Mediterranean landscape. Animal Conservation, 14: 533–541. Google Scholar
  • 38. F. Lisón , and J. F. Calvo . 2013. Ecological niche modelling of three pipistrelle bat species in semiarid Mediterranean landscapes. Acta Oecologica, 47: 68–73. Google Scholar
  • 39. F. Lisón , and J. F. Calvo . 2014. Bat activity over small ponds in dry Mediterranean forests: Implications for conservation. Acta Chiropterologica, 16: 95–101. Google Scholar
  • 40. MEPA. 2004. Landscape assessment study of the Maltese Islands. Malta Environment and Planning Authority, Floriana, 186 pp. Google Scholar
  • 41. B. Miller 2001. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterologica, 3: 93–105. Google Scholar
  • 42. D. J. Milne , M. Armstrong , A. Fisher , T. Flores , and R. C. Pavey . 2004. A comparison of three survey methods for collecting bat echolocation calls and species-accumulation rates from nightly Anabat recordings. Wildlife Research, 31: 57–63. Google Scholar
  • 43. G. G. Moisen 2008. Classification and regression trees. Ecological Informatics, 1: 582–588. Google Scholar
  • 44. A. Morton 2013. DMAP Distribution mapping software. Ceredigion, UK. Available at: http://www.dmap.co.uk/. Google Scholar
  • 45. NSO. 2012. Malta in figures 2012. National Statistics Office, Lascaris, Valletta, Malta, viii + 47 pp. Available at: http://www.nso.gov.mt. Google Scholar
  • 46. M. K. Obrist , R. Boesch , and P. F. Flückiger . 2004. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with synergetic pattern recognition approach. Mammalia, 68: 307–322. Google Scholar
  • 47. S. Parsons , and G. Jones . 2000. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. Journal of Experimental Biology, 203: 2641–2656. Google Scholar
  • 48. R CORE TEAM. 2011. R: a language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org/. Google Scholar
  • 49. A. Radović , and N. Tepić . 2009. Using Corine land cover habitat database for the analysis of breeding bird habitat: case study of white storks (Ciconia ciconia) from northern Croatia. Biologia, 64: 1212–1218. Google Scholar
  • 50. A. Rainho 2007. Summer foraging habitats of bats in a Mediterranean region of the Iberian Peninsula. Acta Chiropterologica, 9: 171–181. Google Scholar
  • 51. N. M. Razali , and Y. B. Wah . 2011. Power comparisons of Sha piro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modelling and Analytics, 2: 21–33. Google Scholar
  • 52. R. D. Redgwell , J. M. Szewczak , G. Jones , and S. Parsons . 2009. Classification of echolocation calls from 14 species of bat by Support Vector Machines and Ensembles of Neural Networks. Algorithms, 2: 907–924. Google Scholar
  • 53. J. M. Russ , and W. I. Montgomery . 2002. Habitat associations of bats in Northern Ireland: implications for conservation. Biological Conservation, 108: 49–58. Google Scholar
  • 54. D. Russo , and G. Jones . 1999. The social calls of Kuhl's pipistrelles Pipistrellus kuhlii (Kuhl, 1819): structure and variation (Chiroptera: Vespertilionidae). Journal of Zoology (Lon don), 249: 476–481. Google Scholar
  • 55. D. Russo , and G. Jones . 2000. The two cryptic species of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) occur in Italy: evidence from echolocation and social calls. Mammalia, 64: 187–197. Google Scholar
  • 56. D. Russo , and G. Jones . 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 57. D. Russo , and G. Jones , G. 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
  • 58. D. Russo , S. Teixeira , L. Cistrone , J. Jesus , D. Teixeira , T. Frei Tas , and G. Jones . 2009. Social calls are subject to stabilizing selection in insular bats. Journal of Biogeography, 36: 2212–2221. Google Scholar
  • 59. H.-U. Schnitzler , and E. K. Kalko . 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
  • 60. M. D. Skowronski , and J. G. Harris . 2006. Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition. Journal of Acoustical Society of America, 119: 1817–1833. Google Scholar
  • 61. G. Storch 1974. Quartare Fledermaus-Faunen von der Insel Malta. Senckenbergiana Lethaea, 55: 407–434. Google Scholar
  • 62. S. M. Swift 1980. Activity patterns of pipistrelle bats (Pipistrel lus pipistrellus) in north-east Scotland. Journal of Zoology (London), 190: 285–295. Google Scholar
  • 63. S. M. Swift , P. A. Racey , and M. I. Avery . 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilio nidae) during pregnancy and lactation. II. Diet. Journal of Animal Ecology, 54: 217–225. Google Scholar
  • 64. D. M. Theobald , D. L. Stevens , D. White , N. S. Urquhart , and A. R. Olsen . 2007. Using GIS to generate spatiallybalanced random survey designs for natural resource applications. Environmental Management, 40: 134–146. Google Scholar
  • 65. C. G. Threlfall , B. Law , and P. B. Banks . 2012. Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape. PLoS ONE, 7: e38800. Google Scholar
  • 66. N. Vaughan , G. Jones , and S. Harris . 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 67. B. J. Wilson 2011. Cover plus: ways of measuring plant canopies and the terms used for them. Journal of Vegetation Science, 22: 197–206. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-5d9d186f-79cc-44d1-919b-5c95f1a5ae7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.