PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 57 | 4 |

Tytuł artykułu

Ammonoid biodiversity changes across the Cenomanian-Turonian boundary in the Yezo Group, Hokkaido, Japan

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ammonoid biodiversity changes from shallow to offshore environments across the Cenomanian–Turonian (C–T) boundary are reconstructed in the Yezo Group, Hokkaido, Japan. This group was probably deposited at approximately 35–45ºN along a westward subduction margin in the northeastern Asian continent. Temporal changes in species richness in the Yezo Group, which show persistently high values during the middle Cenomanian and then decline stepwise from near the middle–late Cenomanian boundary, resemble those in Europe, but not those in Tunisia and the Western Interior. These differences suggest that the Cenomanian–Turonian “mass extinction” was not a global event for ammonoids but was restricted to mid−palaeolatitudinal regions (Europe and Japan). Sea level and climate changes probably influenced ammonoid faunas in the Yezo Group as well as those in Europe. However, it is unlikely that a single, simple cause led to the C–T boundary “mass extinction” because various abiotic changes in the Cenomanian–Turonian transition have been detected, and biotic and abiotic change are interrelated.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.749-757,fig.,ref.

Twórcy

autor
  • Mikasa City Museum, 1-212-1 Nishiki-cho, Ikushumbetsu, Mikasa, Hokkaido 068-2111, Japan
autor

Bibliografia

  • Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C. 1987. The Cenomanian–Turonian Oceanic Anoxic Event, II. Paleoceanographic controls on organic−matter production and preservation. In: J. Brooks and A.J. Fleet (eds.), Marine Petroleum Source Rocks, Geological Society Special Publication 26: 401–420.
  • Batt, R. 1989. Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4: 32–42.
  • Batt, R. 1993. Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea. Lethaia 26: 49–63.
  • Bice, K.L. and Norris, R.D. 2002. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian).Paleoceanography 17: 1070.
  • Bralower, T.J., Fullagar, P.D., Paull, C.K., Dwyer, G.S., and Leckie, R.M. 1997. Mid−Cretaceous strontium−isotope stratigraphy of deep−sea sections. GSA Bulletin 109: 1421–1442.
  • Bornemann, A., Norris, R.D., Friedrich, O., Beckmann, B., Schouten, S., Sinninghe−Damste, J.S., Vogel, J., Hofmann, P., and Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319: 189–192.
  • Clark, L.J. and Jenkyns, H.C. 1999. New oxygen isotope evidence for long−term Cretaceous climatic change in the Southern Hemisphere. Geology 27: 699–702.
  • Elder, W.P. 1989. Molluscan extinction patterns across the Cenomanian–Turonian stage boundary in the western interior of the United States. Paleobiology 15: 299–320.
  • Erbacher, J., Thurow, J., and Littke, R. 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea−level changes in mid−Cretaceous pelagic environments.Geology 24: 499–502.
  • Funaki, H. and Hirano, H. 2004. Cretaceous stratigraphy in the northeastern part of the Obira area, Hokkaido, Japan [in Japanese, with English abstract]. Bulletin of the Mikasa City Museum 8: 17–35.
  • Futakami, M. 1986. Stratigraphy and paleontology of the Cretaceous in the Ishikari province, central Hokkaido. Part I. Stratigraphy and the Cretaceous in the southern areas. Bulletin of the National Science Museum, Tokyo, Series C, Geology 12: 7–34.
  • Gale, A.S., Smith, A.B., Monks, N.E.A., Young, J.A., Howard, A., Wray, D.S., and Huggett, J.M. 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157: 745–757.
  • Hancock, J.M. and Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London 136: 175–186.
  • Haq, B.U., Hardenbol, J., and Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167.
  • Harries, P.J. and Little, C.T.S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154: 39–66.
  • Hasegawa, T. 1997. Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130: 251–273.
  • Hasegawa, T. 1999. Planktonic foraminifera and biochronology of the Cenomanian–Turonian (Cretaceous) sequence in the Oyubari area, Hokkaido, Japan. Paleontological Research 3: 173–192.
  • Hasegawa, T. 2003. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: Increased atmospheric pCO2−induced climate. Journal of Asian Earth Sciences 21: 849–859.
  • Hasegawa, T. and Saito, T. 1993. Global synchroneity of a positive carbon isotope excursion at the Cenomanian/Turonian boundary: Validation by calcareous microfossil biostratigraphy of the Yezo Group, Hokkaido, Japan. The Island Arc 3: 181–191.
  • Hirano, H. 1995. Correlation of the Cenomanian/Turonian boundary between Japan and Western Interior of the United States. Journal of the Geological Society of Japan 101: 13–18.
  • Hirano, H., Matsumoto, T., and Tanabe, K. 1977. Mid−Cretaceous stratigraphy of the Oyubari area, central Hokkaido. Palaeontological Society of Japan, Special Papers 21: 1–10.
  • Jarvis, I., Carson, G.A., Cooper, M.K.F., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D., and Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) Oceanic Anoxic Event. Cretaceous Research 9: 3–103.
  • Jarvis, I., Gale, A., Jenkyns, H., and Pearce, M. 2006. Secular variation in Late Cretaceous carbon isotopes: a new 13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143: 561–608.
  • Jenkyns, H.C., Gale, A.S., and Corfield, R.M. 1994. Carbon− and oxygen−isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131: 1–34.
  • Kaiho, K., Fujiwara, O., and Motoyama, I. 1993. Mid−Cretaceous faunal turnover of intermediate−water benthic foraminifera in the northwestern Pacific margin. Marine Micropaleontology 23: 13–49.
  • Kaiho, K. and Hasegawa, T. 1994. End−Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 111: 29–43.
  • Kaneko, M. and Hirano, H. 2005. Dinoflagellate cyst assemblages and reconstruction of primary productivity across the Cenomanian/Turonian boundary in the Obira area, northwestern Hokkaido, Japan [in Japanese, with English abstract]. Bulletin of the Mikasa City Museum 9: 27–39.
  • Kauffman, E.G. 1995. Global change leading to biodiversity crisis in a Greenhouse world: the Cenomanian–Turonian (Cretaceous) mass extinction. Effect of Past Global Change on Life. Studies in Geophysics, 47–71. National Academy Press, Washington.
  • Kauffman, E.G. and Hart, M.B. 1995. Cretaceous bio−events. In: O.H. Walliser (ed.), Global Events and Event Stratigraphy in Phanerozoic: Results of the International Interdisciplinary Co−operation in the IGCP Project 216, 285–304. Springer Verlag, Berlin.
  • Kawabe, F. 2003. Relationship between mid−Cretaceous (upper Albian–Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Research 24: 751–763.
  • Keller, G., Han, Q., Adatte, T., and Burns, S.J. 2001. Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretaceous Research 22: 391–422.
  • Kerr, A.C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? Journal of the Geological Society, London 155: 619–626.
  • Kodama, K., Maeda, H., Shigeta, Y., Kase, T., and Takeuchi, T. 2002. Integrated biostratigraphy and magnetostratigraphy of the Upper Cretaceous System along the River Naiba in southern Sakhalin, Russia [in Japanese, with English abstract]. Journal of the Geological Society of Japan 108: 366–384.
  • Kruijs, E. and Barron, E. 1990. Climate model prediction of paleoproductivity and potential source−rock distribution. In: A.−Y. Huc (ed.), Deposition of Organic Facies. American Association of Petroleum Geologists Studies in Geology 30: 195–216.
  • Kurihara, K. 2006. Cenomanian/Turonian Boundary Event in the North−west Pacific: Marine Biodiversity and Palaeoceanographic Background. 36 pp. Unpublished Ph.D. thesis, Waseda University, Tokyo.
  • Kurihara, K. and Kawabe, F. 2003. Molluscan faunal changes across the Cenomanian/Turonian boundary: A comparison between the Oyubari area, Hokkaido, Japan and the Western Interior, USA [in Japanese, with English abstract]. Fossils (Kaseki) 74: 36–47.
  • Kurihara, K., Kawabe, F., and Hirano, H. 2007. Ammonoid faunas and stratigraphy of the Cretaceous Yezo forearc basin, Hokkaido, Japan. Bulletin of the Mikasa City Museum 11: 1–23.
  • Larson, R.L. 1991. Geological consequences of superplumes. Geology 19: 963–966.
  • Maeda, H., Mapes, R.H., and Mapes, G. 2003. Taphonomic features of a Lower Permian beached cephalopod assemblages from Central Texas. Palaios 18: 421–434.
  • Monnet, C. 2009. The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeography, Palaeoclimatology, Palaeoecology 282: 88–104.
  • Monnet, C. and Bucher, H. 2007. European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss Journal of Geosciences 100: 137–144.
  • Monnet, C., Bucher, H., Escarguel, G., and Guex, J. 2003. Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end−Cenomanian anoxic event. Eclogae Geologicae Helvetiae 96: 381–398.
  • Nishi, H., Takashima, R., Hatsugai, T., Saito, T., Moriya, K., Ennyu, A., and Sakai, T. 2003. Planktonic foraminiferal zonation in the Cretaceous Yezo Group, Central Hokkaido, Japan. Journal of Asian Earth Sciences 21: 867–886.
  • Okada, H., 1983. Collision orogenesis and sedimentation in Hokkaido, Japan. In: M. Hashimoto and S. Uyeda (eds.), Accretion Tectonics in the Circum−Pacific Regions, 91–105, Terra Scientific Publishing Company, Tokyo.
  • Schlanger, S.O. and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events—causes and consequences. Geologie en Mijinbow 55: 179–184.
  • Sepkoski, J.J., Jr. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society, London 146: 7–19.
  • Sepkoski, J.J., Jr. 1996. Patterns of Phanerozoic extinction: A perspective from global data bases.In: O.H. Walliser (ed.), Global Events and Event Stratigraphy in the Phanerozoic, 33–51. Springer, Berlin.
  • Smith, A.B., Gale, A.S., and Monks, N.E.A. 2001. Sea−level change and rock−record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27: 241–253.
  • Stenzel, H.B. 1964. Living Nautilus. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3, K59–K93. The Geological Society of America and the University of Kansas Press, Lawrence.
  • Takahashi, A. 2005. Responses of inoceramids bivalves to environmental disturbances across the Cenomanian/Turonian boundary in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Research 26: 567–580.
  • Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north−west Pacific margin. Cretaceous Research 25: 365–390.
  • Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N., and Mochizuki, S. 2010. High−resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific. Earth and Planetary Science Letters 289: 570–582.
  • Tanabe, K., Hirano, H., Matsumoto, T., and Miyata, Y. 1977. Stratigraphy of the Upper Cretaceous deposits in the Obira area, northwestern Hokkaido [in Japanese, with English abstract]. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology 12: 181–202.
  • Toshimitsu, S., Hirano, H., Matsumoto, T., and Takahashi, K. 2003. Database and species diversity of Japanese Cretaceous ammonoids. Journal of Asian Earth Sciences 21: 887–893.
  • Uramoto, G., Abe, Y., and Hirano, H. 2009. Carbon isotope fluctuations of terrestrial organic matter for the Upper Cretaceous (Cenomanian–Santonian) in the Obira area of Hokkaido, Japan. Geological Magazine 146: 761–771.
  • Uramoto, G., Fujita, T., Takahashi, A., and Hirano, H. 2007. Cenomanian (Upper Cretaceous) carbon isotope stratigraphy of terrestrial organic matter for the Yezo Group, Hokkaido, Japan.Island Arc 16: 465–478.
  • Voigt, S., Gale, A.S., and Flögel, S. 2004. Midlatitude shelf seas in the Cenomanian–Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography 9: PA4020.
  • Wilson, P.A., Norris, R.D., and Cooper, M.J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30: 607–610.
  • Yazykova, E. 2004. Ammonite biozonation and litho−/chronostratigraphy of the Cretaceous in Sakhalin and adjacent territories of Far East Russia. Acta Geologica Polonica 54: 273–312.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5cc4d5af-4fb1-4add-8c3a-cd54ff79c2c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.