PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 12 | 2 |

Tytuł artykułu

The usefulness of some soil properties and plant traits for the estimation of spatial variation in the 35 field experiment with pea (Pisum sativum L. sensu lato)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

http://www.ejpau.media.pl/volume12/issue2/art-01.html

Twórcy

  • Department of Plant Breeding and Seed Production, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Plant Breeding and Seed Production, University of Warmia and Mazury, Olsztyn, Poland
  • Department of Plant Breeding and Seed Production, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Plant Breeding and Seed Production, University of Warmia and Mazury, Olsztyn, Poland

Bibliografia

  • 1. Bartlett M.S., 1978. Nearest neighbour models in the analysis of field experiments. J. R. Statist. Soc. B 40, 147–174.
  • 2. Bose R.C., 1947. Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166.
  • 3. Bose R.C, Kishen K., 1940. On the problem of confounding in the general symmetrical factorial design. Sankhya 5, 21–36.
  • 4. Box G.E.P, Hunter W.G., Hunter J.S., 1978. Statistics for experiments. John Wiley and Sons New York.
  • 5. Brownie C, Bowman D.T., Burton J.W., 1993. Estimating spatial variation of data from yield trials: A comparison of methods. Agron. J. 85, 1244–1253.
  • 6. Cochran W.G., Cox G.M., 1957. Experimental designs. John Wiley and Sons New York.
  • 7. Cressie N.A.C., 1993. Statistics for Spatial Data, revised edition. John Wiley and Sons New York.
  • 8. Cullis B, Gleeson A.C., 1991. Spatial analysis of field experiments – An extension to two dimension. Biometrics 47, 1449–1460.
  • 9. Cullis B, Gogel B, Verbyla A, Thompson R., 1998. Spatial analysis of multi-environment early generation variety trials. Biometrics 54, 1–18.
  • 10. Daniel C., 1959. Use of half-normal plots in interpreting factorial two level experiment. Technometrics 1, 311–342.
  • 11. Davies O.L., 1954. The design and analysis of industrial experiments of industrial experiments. Oliver and Boyd London.
  • 12. Emerson J.D., Wong Y.G., 1985. Resistant non-additive fit for two way tables. [In:] Hoaglin DCF, Mosteller F., Tuckey J.W. (eds), Exploring data tables, trends, and shapes. Wiley New York, 67–124.
  • 13. Federer W.T., 1955. Experimental design: theory and application. Mcmillan New York.
  • 14. Finney D.J., 1946. Recent developments in the design of field experiments. III. Fractional replication. J. Agric. Sci. 36, 184–191.
  • 15. Fisher R.A., 1925. Statistical methods for research workers. Oliver and Boyd New York.
  • 16. Fisher R.A., 1935. The design of experiments. Oliver and Boyd London.
  • 17. Fisher R.A., 1942. The theory of confounding in factorial experiments in relation to the theory of groups. Ann. of Eugenics 11, 341–353.
  • 18. Gill P.S, Shukla G.K., 1985. Efficiency of nearest neighbour balanced block designs for correlated observations. Biometrica 72(3), 539–544.
  • 19. Gołaszewski J., 1996. Optymalizacja metodyki eksperymetnu polowego z roślinami strączkowymi w aspekcie zmienności przestrzennej pola doświadczalnego [Optimization of field experiment methodics with legumes in the aspect of spatial variability of the experimental field]. Acta Acad. Agric. Tech. Olst., Agricultura 62, 1–91 [in Polish].
  • 20. Gołaszewski J., 1999. Application of geostatistical methods to analysis of the data from a pea breeding trial. Listy Biometryczne – Biometrical Letters 36(2), 145–157.
  • 21. Gołaszewski J., 2000. Statistical treatment of spatial variability in field trials. Polish J. Nat. Sci. 5, 159–176.
  • 22. Gołaszewski J., 2000. Szacowanie i eliminacja efektów zmienności przestrzennej w doświadczalnictwie polowym [Estimation and elimination of spatial variation effects in field experimentation]. Post. Nauk Rol. 2, 31–51 [in Polish].
  • 23. Gołaszewski J, Szempliński W., 1998. Doświadczenie czynnikowe ułamkowe jako narzędzie badawcze w opracowaniu technologii uprawy roślin rolniczych [Fractional design as a tool in evaluation of crop production technology]. Rocz. Nauk Rol. A 113(1/2), 77–93 [in Polish].
  • 24. Gomez K.A., Gomez A.A., 1984. Statistical procedures for agricultural research. John Wiley and Sons.
  • 25. Grondona M.O., Cressie N., 1991. Using spatial considerations in the analysis of experiments. Technometrics 33(4), 381–392.
  • 26. Grondona M.O., Crossa J., Fox P., Pfeiffer W.H., 1996. Analysis of variety yield trials using two- dimensional separable ARIMA processes. Biometrics 52, 764–770.
  • 27. Hatheway W.H., 1961. Convenient plot size. Agron. J. 53(4), 279–280.
  • 28. Hoaglin D.C., Mosteller F, Tukey J.W., 1985. Exploring data tables, trends and shapes. Wiley New York.
  • 29. Kempthorne O., 1947. A simple approach to confounding and fractional replication in factorial experiments. Biometrika 34, 255–272.
  • 30. Kempthorne O., 1952. The design and analysis of experiments. Wiley New York.
  • 31. Kempton R.A, Lockwood G., 1984. Inter-plot competition in variety trials of field beans (Vicia faba L.). J. Agric. Sci. (Cambridge) 103, 293–302.
  • 32. Kempton R.A, Fox P.N., 1997. Statistical methods for plant variety evaluation. Chapman and Hall London.
  • 33. Kriege D.G., 1966. Two-dimensional weighted moving average trend surface for ore-evaluation. J. South African Institute of Mining and Metallurgy 66, 13–38.
  • 34. Mądry W., Rozbicki J., Wyszyński Z., 1995. Planowanie doświadczeń czynnikowych typu 2(k) w 2(p) blokach niekompletnych oraz analiza statystyczna wyników [The construction of factorial designs 2(k) in 2(p) incomplete blocks and statistical analysis of the results]. Rocz. Nauk Rol. 111A (1/2), 57–71 [in Polish].
  • 35. Matheron G., 1971. The theory of regionalized variables and its applications. Cahier du Centre de Morphologie Mathematique 5, 21–42.
  • 36. Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny właściowości gleb i roślin [Methods for the analysis and determination of soil and vegetation properties]. Wyd. Instytut Ochrony Środowiska, Warszawa [in Polish].
  • 37. Papadakis J.S., 1937. Methode statistique pour des experiences sur champ [Statistical method for the experiments in the field] Bull. Inst. Amel. Plantes a Salonique 23, 1–30 [in French].
  • 38. Prew R.D., Church B.M., Dewar A.M., Lacey J., Penny A., Plumb R.T., Thorne N., Todd A.D., Williams T.D., 1983. Effects of eight factors on the growth and nutrient uptake of winter wheat and on the incidence of pests and diseases. J. Agric. Sci.(Cambridge) 100, 363–382.
  • 39. Smith H., 1938. An empirical law describing heterogeneity in agricultural crops. J. Agric. Sci. 3, 1–23.
  • 40. Smith A., Cullis B., Thompson R., 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57, 1138–1147.
  • 41. Sokal R.R., Oden N.L., 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc. 10, 199–249.
  • 42. Stewardson D.J., Whitfield R.I., 2004. A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameters settings. J. Oper. Res. Soc. 55, 132–138.
  • 43. Stroup W.W., Baenziger P.S., Mulitze D.K., 1994. Removing spatial variation from wheat yield trials: A comparison of methods. Crop Sci. 86, 62–66.
  • 44. Van Es H.M., van Es C.L., 1993. Spatial nature of randomization and its effect on the outcome of field experiments. Agron. J. 85, 420–428.
  • 45. Yang R.C., Yeb T.Z., Bladec S.F., Bandarad M., 2004. Efficiency of spatial analyses of field pea variety trials. Crop Sci. 44, 49–55.
  • 46. Yates F., 1937. The design and analysis of factorial experiments. Imperial Bur. Soil Science Techn. Comm. 35, 1–95.
  • 47. Wilkinson G.N., Eckert S.R., Hancock T.W., Mayo O., 1983. Nearest neighbour (NNA) analysis of field experiments (with discussion). J. Royal Stat. Soc. B 45, 151–211.
  • 48. Załuski D., Gołaszewski J., Stawiana-Kosiorek A., 2005. Efficiency of 35 factorial design determined using additional information on the spatial variability of the experimental field. Listy Biometryczne – Biometrical Letters 42(1), 67–77.
  • 49. Załuski D., Gołaszewski J., 2006. Efficiency of 35-p fractional factorial design determined using additional information on the spatial variability of the experimental field. J. Agron. Crop Sci. 192, 303–309.
  • 50. Zimmerman D., Harville D.A., 1991. A random field approach to the analysis of field plot experiments. Biometrics 47, 223–239.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c0630b6-0b0a-424c-9489-83f0db1b68d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.