PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 1 |

Tytuł artykułu

Polymorphic variants of the PPAR (Peroxisome Proliferator-Activated Receptor) genes: relevance for athletic performance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The elite athletic phenotype is a complex combination influenced by both multiple genes (polygenic) and environmental factors such as training and nutrition. Among single nucleotide polymorphisms (SNPs) associated with variation in physical traits, which are particularly important for performance in a variety of sports and with the elite athlete status, variants of PPAR (Peroxisome Proliferator-Activated Receptor) genes have emerged as crucial moderators that control the expression of genes encoding enzymes and other proteins involved in energy homeostasis (lipid and carbohydrate metabolism). Accumulated findings from studies showing that combinations of polymorphic markers located in PPAR genes are associated with increased/decreased performance raise the possibility that the PPAR gene variants are true performance enhancing polymorphisms (PEPs) that are believed to have a physiological impact on human body composition and metabolism. The aim of this review is to summarize the state of knowledge on the role of polymorphic variants of PPAR genes in physical performance or health related fitness phenotypes.

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.5-15,fig.,ref.

Twórcy

  • Department of Biological Bases of Physical Culture, University of Szczecin, Szczecin, Poland

Bibliografia

  • 1. Beunen G, Thomis M. Gene driven power athletes? Genetic variation in muscular strength and power. Br J Sports Med. 2006; 40(10): 822-823.
  • 2. Karpe F, Ehrenborg EE. PPAR5 in humans: genetic and pharmacological evidence for a significant metabolic function. Curr Opin Lipidol. 2009; 20(4): 333-336.
  • 3. Bray MS, Hagberg JM, Perusse L, et al. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009; 41(1): 35-73.
  • 4. Desvergne B, Wahli W. Peroxisome proliferator activated receptors: nuclear control of metabolism. Endocr Rev. 1999; 20: 649-688.
  • 5. Michalik L, Auwerx J, Berger JP, et al. International union of pharmacology. LXI. Peroxisome proliferator- activated receptors. Pharmacol Rev. 2006; 58: 726-741.
  • 6. Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010; 140: w13071.
  • 7. Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012; 23(7): 351-363.
  • 8. Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999; 97: 1-3.
  • 9. www.ncbi.nlm.nih.gov/gene
  • 10. Eynon N, Meckel Y, Alves AJ, et al. Is there an interac¬tion between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Exp Physiol. 2009a; 94(11): 1147-1152.
  • 11. Ostrander EA, Huson HJ, Ostrander GK. Genetics of athletic performance. Ann Rev Genom Humen Genet. 2009; 10: 407-429.
  • 12. Lacquemant C, Lepretre F, Torra IP, et al. Mutation screening of the PPARa gene in type 2 diabetes associ¬ated with coronary heart disease. Diabetes Metab. 2000; 26: 393-401.
  • 13. Gouni-Berthold I, Giannakidou E, Muller-Wieland D, et al. Association between the PPARa L162V polymor¬phism, plasma lipoprotein levels, and atherosclerotic disease in patients with diabetes mellitus type 2 and in nondiabetic controls, Am Heart J. 2004; 147: 1117¬1124.
  • 14. Flavell DM, Jamshidi Y, Hawe E, et al. Peroxisome proliferator activated receptor a gene variants influ¬ence progression of coronary atheroscelorsis and risk of coronary artery disease. Circulation. 2002; 105(12): 1440-1445.
  • 15. Jamshidi Y, Montgomery HE, Hense H-W, et al. Peroxi¬some proliferator-activated receptor a gene regulates left ventricular growth in response to exercise and hyperten¬sion. Circulation. 2002; 105: 950-955.
  • 16. Sack MN, Rader TA, Park S, et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996; 94: 2837-2842.
  • 17. Ahmetov II, Mozhayskaya IA, Flavell DM, et al. PPARa gene variation and physical performance in Russian athletes. Eur J Appl Physiol. 2006; 97: 103-108.
  • 18. Doney ASF, Fisher B, Lee S, et al. Association of com¬mon variation in the PPARA gene with incident myocardial infraction in individuals with type 2 diabetes: a Go-DARTS study. Nucl Recept. 2005; 3: 4.
  • 19. Chen ES, Mazzotti DR, Furuya TK, et al. Association of PPARa gene polymorphisms and lipid serum levels in a Brazilian elderly population. Exp Mol Pathol. 2010; 88: 197-201.
  • 20. Cresci S, Jones PG, Sucharov CC, et al. Interaction between PPARA genotype and ß-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008; 9(10): 1403¬1417.
  • 21. Ciçszczyk P, Sawczuk M, Maciejewska A, et al. The variation of Peroxisome Proliferator Activated Receptor a gene in elite combat athletes. Eur J Sport Sci. 2011; 11(2): 119-123.
  • 22. Maciejewska A, Sawczuk M, Ciçszczyk P. Variation in the PPARa gene in Polish rowers. J Sci Med Sport. 2011;14(1): 58-64.
  • 23. Eynon N, Meckel Y, Sagiv M, et al. Do PPARGC1A and PPARa polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports. 2009b; 94(11): 1147-1152.
  • 24. Horowitz JF, Leone TC, FengW, et al. Effect of endurance training on lipid metabolism in women: a potential rolefor PPARa in the metabolic response to training. Am J Physiol Endocrinol Metab. 2000; 279: 348-355.
  • 25. Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor¬a coactivator-1 and peroxisome proliferator-activated receptor-a in skeletal muscle. Diabetes. 2003; 52: 2874-2881.
  • 26. Kramer DK, Ahlsen M, Norrbom J, et al. Human skel¬etal muscle fibre type variations correlate with PPARa, PPARS and PGC-1a mRNA. Acta Physiol. 2006; 188: 207-216.
  • 27. Tontonoz P, Hu E, Graves RA, et al. mPPAR Y 2: tis¬sue-specific regulator of an adipocyte enhancer. Genes Devel. 1994; 8: 1224-1234.
  • 28. Meirhaeghe A, Amouyel P. Impact of genetic variation of PPARy in humans. Mol Genet Metab. 2004; 83(1-2): 93-102.
  • 29. Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARy gene. J Biol Chem. 1997; 272: 18779-18789.
  • 30. Yen CJ, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor Y (hPPAR Y) gene in diabetic Caucasians: identification of a Pro12Ala PPAR Y 2 missense mutation. Biochem Biophys Res Commun. 1997; 241: 270-274.
  • 31. Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, et al. A Pro12Ala substitution in PPAR/2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998; 20: 284-287.
  • 32. Masugi J, Tamori Y, Mori H, Koike T, Kasuga M. Inhibi¬tory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-Y 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun. 2000; 268(1): 178-182.
  • 33. Yamamoto Y, Hirose H, Miyashita K, Nishikai K, Saito I, et al. PPAR(Y)2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population. Metabolism. 2002; 51: 1407-1409.
  • 34. Schneider J, Kreuzer J, Hamann A, Nawroth PP, Dugi KA. The proline 12 alanine substitution in the peroxi- some proliferator-activated receptor-Y2 gene is associated with lower lipoprotein lipase activity in vivo. Diabetes. 2002; 51: 867-870.
  • 35. Simon I, Vendrell J, Gutierrez C, Fernandez-Real JM, Vendrell I, et al. Pro12Ala substitution in the peroxi¬some proliferator-activated receptor-Y is associated with increased leptin levels in women with type-2 diabetes mellitus. Horm Res. 2002; 58: 143-149.
  • 36. Ek J, Andersen G, Urhammer SA, Hansen L, Carstensen B, et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-Y2 (PPAR-Y2) gene in relation to insulin sensitivity among glucose tol¬erant Caucasians. Diabetologia. 2001; 44(9): 1170-1176.
  • 37. Koch M, Rett K, Maerker E, et al. The PPARy2 amino acid polymorphism Pro 12 Ala is prevalent in offspring of type II diabetic patients and is associated to increased insulin sensitivity in a subgroup of obese subjects. Dia¬betologia. 1999; 42: 758-762.
  • 38. Stumvoll M, Wahl HG, Löblein K, et al. The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-Y2 gene is associated with increased antilipo- lytic insulin sensitivity. Diabetes. 2001; 50: 876-881.
  • 39. Vänttinen M, Nuutila P, Pihlajamäki J, et al. The effect of the Ala12 allele of the peroxisome proliferator-activated receptor-Y2 gene on skeletal muscle glucose uptake de¬pends on obesity: a positron emission tomography study. Clin Endocrinol Metab. 2005; 90(7): 4249-4254.
  • 40. Thamer C, Haap M, Volk A, et al. Evidence for greater oxidative substrate flexibility in male carriers of the Pro12Ala polymorphism in PPAR/2. Horm Metab Res. 2002; 34: 132-136.
  • 41. Maciejewska-Karlowska A, Sawczuk M, Ciçszczyk P, et al. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor Y gene and strength athlete status. PlosOne. 2013; [in press].
  • 42. Beamer BA, Yen CJ, Andersen RE, et al. Association of the Pro12Ala variant in the peroxisome proliferator- activated receptor-Y2 gene with obesity in two Caucasian populations. Diabetes. 1998; 47: 1806-1808.
  • 43. Doney A, Fischer B, Frew D, et al. Haplotype analysis of the PPARY Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet. 2002; 3: 21.
  • 44. Ek J, Urhammer SA, Sorensen TI, et al. Homozygosity of the Pro12Ala variant of the peroxisome proliferation- activated receptor-Y2 (PPAR-Y2): divergent modulating effects on body mass index in obese and lean Caucasian men. Diabetologia. 1999; 42(7): 892-895.
  • 45. Franks PW, Luan J, Browne PO, et al. Does peroxisome proliferator-activated receptor Y genotype (Pro12ala) modify the association of physical activity and dietary fat with fasting insulin level? Metabolism. 2004; 53(1): 11-16.
  • 46. Kawaguchi H, Akune T, Yamaguchi M, et al. Distinct effects of PPARY insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab. 2005; 23: 275-279.
  • 47. Cock TA, Back J, Elefteriou F, et al. Enhanced bone formation in lipodystrophic PPARY(hyp/hyp) mice re¬locates haematopoiesis to the spleen. EMBO Rep. 2004; 5: 1007-1012.
  • 48. Ahmetov II, Mozhayskaya IA, Lyubaeva EV, et al. PPARG Gene polymorphism and locomotor activity in humans. Bull Exp Biol Med. 2008; 146(5): 630-632.
  • 49. Akhmetov II, Popov DV, Mozhaïskaia IA, et al. Associa¬tion of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross Fiziol Zh Im I M Sechenova. 2007; 93(8): 837-843.
  • 50. Karpe F, Ehrenborg EE. PPARdelta in humans: genetic and pharmacological evidence for a significant metabolic function. Curr Opin Lipidol. 2009; 20(4): 333-336.
  • 51. Holst D, Luquet S, Nogueira V, et al. Nutritional regula¬tion and role of peroxisome proliferator-activated recep¬tor d in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta. 2003; 1633: 43-50.
  • 52. Grimaldi PA. Regulatory role of peroxisome proliferator- activated receptor delta (PPAR delta) in muscle metabo¬lism. A new target for metabolic syndrome treatment? Biochimie. 2005; 87(1): 5-8.
  • 53. Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor d controls muscle devel¬opment and oxidative capability. FASEB J. 2003; 17: 2299-2301.
  • 54. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARd. PLoS Biol. 2004; 2: 1-8.
  • 55. Piqueras L, Reynolds AR, Hodivala-Dilke KM, et al. Activation of PPARß/ö induces endothelial cell prolifera¬tion and angiogenesis. Arterioscler Thromb Vasc Biol. 2007; 27: 63-69.
  • 56. Allen DLM, Harrison BC, Maass A, et al. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol. 2001; 90: 1900-1908.
  • 57. McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia and capillary density in college men after resistance training. J Appl Physiol. 1996; 81: 2004-2012.
  • 58. Kannisto K, Chibalin A, Glinghammar B, et al. Differ¬ential expression of peroxisomal proliferator activated receptors a and 5 in skeletal muscle in response to changes in diet and exercise. Int J Mol Med. 2006; 17: 45-52.
  • 59. Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005; 19: 1498-1500.
  • 60. Stefan N, Thamer C, Staiger H, et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and in¬sulin sensitivity during lifestyle intervention. J Clin Endocrinol Metab. 2007; 92: 1827-1833.
  • 61. Skogsberg J, Kannisto K, Cassel TN, et al. Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol. 2003; 23: 637-643.
  • 62. Hautala AJ, Leon AS, Skinner JS, et al. Peroxisome proliferator-activated receptor-5 polymorphisms are as¬sociated with physical performance and plasma lipids: the HERITAGE Family Study. Am J Physiol Heart Circ Physiol. 2007; 292: H2498-2505.
  • 63. Akhmetov II, Astranenkova IV, Rogozkin VA. Associa¬tion of PPARD gene polymorphism with human physical performance. Mol Biol (Mosk). 2007; 41: 852-857.
  • 64. Maciejewska A, Sawczuk M, Cieszczyk P, et al. The PPARGC1A gene Gly482Ser in Polish and Russian ath¬letes. J Sports Sci. 2012; 30(1): 101-113.
  • 65. Vanttinen M, Nuutila P, Kuulasmaa T, et al. Single nucleotide polymorphisms in the peroxisome prolifera- tor-activated receptor 5 gene are associated with skeletal muscle glucose uptake. Diabetes. 2005; 54: 3587-3591.
  • 66. Thamer C, Machann J, Stefan N, et al. Variations in PPARD determine the change in body composition during lifestyle intervention: a whole-body magnetic resonance study. J Clin Endocrinol Metab. 2008; 93: 1497-1500.
  • 67. Shin HD, Park BL, Kim LH, et al. Genetic polymor¬phisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes. 2004; 53: 847¬851.
  • 68. Saez ME, Grilo A, Moron FJ, et al. Interaction between calpain 5, peroxisome proliferator-activated receptor- gamma and peroxisome proliferator-activated receptor- 5 genes: a polygenic approach to obesity. Cardiovasc Diabetol. 2008; 7: 23.
  • 69. Grarup N, Albrechtsen A, Ek J, et al. Variation in the peroxisome proliferatoractivated receptor delta gene in relation to common metabolic traits in 7,495 middle-aged white people. Diabetologia. 2007; 50: 1201-1208.
  • 70. MacArthur DG, North KN. Genes and human elite ath¬letic performance. Hum Genet. 2005; 116(5): 331-339.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c00b5af-1a05-4082-bc33-a5ce062bd2bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.