PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 1 |

Tytuł artykułu

Effects of supplementing a mixed diet with echium (Echium plantagineum) oil on methanogenesis in a rumen simulation system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The rumen simulation technique (RUSITEC) was used to evaluate the effect of two levels of echium (Echium plantagineum) oil (EO) on methano-genesis. Treatments comprised: control (commercial total mixed ration for lactating dairy cows; positive control), control supplemented with sodium 2-bromoethanesulfonate (5 mM on a dry matter (DM) basis; negative control; BES) and control supplemented with 4% (EO4) and 8% (EO8) of echium oil (g · 100–1 g DM). Methane production and the proportion of methanogens in total rumen prokaryote 16S rDNA from effluents and solid residues were decreased by EO8. Oil supplementation did not affect total volatile fatty acid production and digestibility of DM and neutral detergent fibre, but increased propionate proportion. Despite the in vitro results suggesting that echium oil is a promising natural strategy for the mitigation of enteric methane, it is difficult to distinguish whether the observed effects are due to secondary metabolites, a particular fatty acid, or mixtures of fatty acids contained in the echium oil.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

1

Opis fizyczny

p.3-10,ref.

Twórcy

autor
  • REQUIMTE, ICBAS, Institute of Biomedical Sciences de Abel Salazar, Universidade do Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal
  • REQUIMTE, ICBAS, Institute of Biomedical Sciences de Abel Salazar, Universidade do Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal
  • Scotland’s Rural College, King’s Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
  • REQUIMTE, ICBAS, Institute of Biomedical Sciences de Abel Salazar, Universidade do Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal
  • REQUIMTE, ICBAS, Institute of Biomedical Sciences de Abel Salazar, Universidade do Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal

Bibliografia

  • Amaro P., Maia M.R.G., Dewhurst R.J., Fonseca A.J.M., Cabrita A.R.J., 2012. Effects of increasing levels of stearidonic acid on methane production in a rumen in vitro system. Anim. Feed Sci. Tech. 173, 252–260
  • AOAC, 1990. Association of Official Analytical Chemists. Official Methods of Analysis. 15th Edition. Arlington, VA
  • Balch W.E., Wolfe R.S., 1979. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J. Bacteriol. 137, 264–273
  • Bernal-Santos G., O’Donnell A.M., Vicini J.L., Hartnell G.F., Bauman D.E., 2010. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J. Dairy Sci. 93, 32–37
  • Berti M., Johnson B.L., Dash S., Fischer S., Wilckens R., Hevia F., 2007. Echium: A source of stearidonic acid adapted to the northern great plains in the US. In: J. Janick, A. Whipkey (Editors). Issues in New Crops and New Uses. ASHS Press. Alexandria, VA (USA)
  • Brankatschk R., Bodenhausen N., Zeyer J., Bürgmann H., 2012. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol. 78, 4481–4489
  • Cabi, 2014. Invasive Species Compendium. In: http://www.cabi.org/isc
  • Calder P.C., 2006. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Amer. J. Clin. Nutr. 83, 1505S–1519S
  • Carberry C.A., Kenny D.A., Han S., McCabe M.S., Waters S.M., 2012. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl. Environ. Microbiol. 78, 4949–4958
  • Cheeke P.R., 1984. Comparative toxicity and metabolism of pyrrolizidine alkaloids in ruminants and nonruminant herbivores. Can. J. Anim. Sci. 64, 201–202
  • Colegate S.M., Edgar J.A., Knill A.M., Lee S.T., 2005. Solid-phase extraction and HPLC-MS profiling of pyrrolizidine alkaloids and their N-oxides: a case study of Echium plantagineum. Phytochem. Analysis 16, 108–119
  • Czerkawski J.W., 1986. An introduction to rumen studies. Pergamon Press, Oxford (UK)
  • Czerkawski J.W., Blaxter K.L.,Wainman F.W., 1966. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Brit. J. Nutr. 20, 349–362
  • Czerkawski J.W., Breckenridge G., 1977. Design and development of a long-term rumen simulation technique (Rusitec). Brit. J. Nutr. 38, 371–384
  • Demeyer D.I., Henderickx H.K., 1967. The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochim. Biophys. Acta 137, 484–497
  • Denman S.E., Tomkins N.W., McSweeney C.S., 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62, 313–322
  • Dohme F., Machmüller A., Wasserfallen A., Kreuzer M., 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32, 47–51
  • Edwards J.E., McEwan N.R., McKain N., Walker N., Wallace R.J., 2005. Influence of flavomycin on ruminal fermentation and microbial populations in sheep. Microbiology 151, 717–725
  • Guil-Guerrero J.L., 2007. Stearidonic acid (18:4n-3): Metabolism, nutritional importance, medical uses and natural sources. Eur. J. Lipid Sci. Tech. 109, 1226–1236
  • Hook S., Steele M., Northwood K., Wright A.D., McBride B., 2011. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecol. 62, 94–105
  • Johnson K.A., Johnson D.E., 1995. Methane emissions from cattle. J. Anim. Sci. 73, 2483–2492
  • Karnati S.K.R., Sylvester J.T., Ribeiro C.V.D.M., Gilligan L.E., Firkins J.L., 2009. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J. Dairy Sci. 92, 3849–3860
  • Kitessa S.M., Young P., 2011. Enriching milk fat with n−3 polyunsaturated fatty acids by supplementing grazing dairy cows with ruminally protected Echium oil. Anim. Feed Sci. Tech. 170, 35–44
  • Kitessa S.M., Abeywardena M., Wijesundera C., Nichols P.D., 2014. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 6, 2035–2058
  • Lee S.Y., Yang S.H., Lee W.S., Kim H.S., Shin D.E., Ha J.K., 2009. Effect of 2-bromoethanesulfonic acid on in vitro fermentation characteristics and methanogen population. Asian-Austr. J. Anim. Sci. 22, 42–48
  • Lillis L., Boots B., Kenny D.A., Petrie K., Boland T.M., Clipson N., Doyle E.M., 2011. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J. Appl. Microbiol. 111, 1426–1435
  • Machmüller A., Ossowski D.A., Wanner M., Kreuzer M., 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Tech. 71, 117–130
  • Maia M.R.G., Chaudhary L.C., Figueres L., Wallace R.J., 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Anton. Leeuwenhoek 91, 303–314
  • Maia M.R.G., Correia C.A.S., Alves S.P., Fonseca A.J.M., Cabrita A.R.J., 2012. Technical note: Stearidonic acid metabolism by mixed ruminal microorganisms in vitro. J. Anim. Sci. 90, 900–904
  • Martin C., Morgavi D.P., Doreau M., 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351–365
  • McCartney C.A., Bull I.D., Dewhurst R.J., 2013. Chemical markers for rumen methanogens and methanogenesis. Animal 7, 409–417
  • McDougall E.I., 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43, 99–109
  • McEwen A.B., Whittle E.B., Parsons R.G., McCurrie K., 2003. C-14 -Glyphosate: Uptake into Echium plantagineum following preemergent application. In: Proceedings of Brighton Crop Protection International Congress: Crop Science & Technology. Glasgow (UK), pp. 883–886
  • Mozaffarian D., 2008. Fish and n−3 fatty acids for the prevention of fatal coronary heart disease and sudden cardiac death. Amer. J. Clin. Nutr. 87, 1991S–1996S
  • Muyzer G., de Waal E.C., Uitterlinden A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700
  • Prins R.A., Nevel C.J., Demeyer D.I., 1972. Pure culture studies of inhibitors for methanogenic bacteria. Anton. Leeuwenhoek 38, 281–287
  • Stewart C.S., Flint H.J., Bryant M.P., 1997. The rumen bacteria. In: P.N. Hobson (Editor). The Rumen Microbial Ecosystem. Chapman and Hall, London (UK), pp. 10–72
  • Surette M.E., Edens M., Chilton F.H.,Tramposch K.M., 2004. Dietary echium oil increases plasma and neutrophil long-chain (n-3) fatty acids and lowers serum triacylglycerols in hypertriglyceridemic humans. J. Nutr. 134, 1406–1411
  • Wachenheim D.E., Blythe L.L., Craig A.M., 1992. Characterization of rumen bacterial pyrrolizidine alkaloid biotransformation in ruminants of various species. Vet. Human Toxicol. 34, 513–517
  • Wang L.A., Goonewardene Z., 2004. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 84, 1–11
  • Weston P.A., Weston L.A., Hildebrand S., 2013. Metabolic profiling in Echium plantagineum: presence of bioactive pyrrolizidine alkaloids and napthoquinones from accessions across southeastern Australia. Phytochem. Rev. 12, 831–837
  • Wettstein H.R., Machmüller A., Kreuzer M., 2000. Effects of raw and modified canola lecithins compared to canola oil, canola seed and soy lecithin on ruminal fermentation measured with rumen simulation technique. Anim. Feed Sci. Tech. 85, 153–169
  • Yamazaki K., Fujikawa M., Hamazaki T., Yano S., Shono T., 1992. Comparison of the conversion rates of α-linolenic acid (18:3(n−3)) and stearidonic acid (18:4(n−3)) to longer polyunsaturated fatty acids in rats. Biochim. Biophys. Acta 1123, 18–26
  • Yu Z., Morrison M., 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812
  • Zhang C.M., Guo Y.Q., Yuan Z.P., Wu Y.M., Wang J.K., Liu J.X., Zhu W.Y., 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Tech. 146, 259–269
  • Zhang D.F., Yang H.J., 2011. Combination effects of nitrocompounds, pyromellitic diimide, and 2-bromoethanesulfonate on in vitro ruminal methane production and fermentation of a grain-rich feed. J. Agr. Food Chem. 60, 364–371

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5ae4bab2-7d82-4a53-8691-5c35da71014a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.