PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Heavy metals in mine-tailing soil mixtures cultivated with Ricinus communis L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ricinus communis L. was found to vegetate mine tailings with high concentrations of Al (4,456 mg kg⁻¹), As (3,473 mg kg⁻¹), Cd (120 mg kg⁻¹), Cr (14 mg kg⁻¹), Cu (1,147 mg kg⁻¹), and Pb (910 mg kg⁻¹). We investigated how this plant responded to increased heavy metal concentrations by mixing mine tailing at 0%, 50%, 70%, and 100% with soil at 100%, 50%, 30%, and 0%, while metal concentrations in the rhizosphere, roots, and aboveground parts of R. communis were monitored. Ricinus communis shoots were 19% smaller and roots 8% in soil mixed with an equal amount of mine tailings compared to plants cultivated in soil and 33% and 54%, respectively, when cultivated in mine tailings. The ratio of As, Cd, Cu, and Pb in the aboveground plant parts to the concentration in soil remained <0.12, while that of the roots <0.25. The As concentration was 35% lower in the bulk soil than in the rhizosphere. We found that R. communis growth was inhibited strongly when cultivated in mine tailings, but less so when mixed with soil, and metals did not accumulate in the roots and aboveground plant parts. These characteristics make R. communis ideal to vegetate metal-contaminated soil, thereby reducing the environmental hazards of mine tailings.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2007-2022,fig.,ref.

Twórcy

  • Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico
  • Laboratory of Molecular Biology, Instituto Tecnologico de Tuxtla Gutierrez, Tecnologico Nacional de Mexico, Tuxtla Gutierrez, Chiapas, Mexico
  • Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico
  • Department of Chemistry, Unidad Profesional Interdisciplinaria de Biotecnologia-IPN (UPIBI), Barrio la Laguna Ticoman, Mexico
  • Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico
autor
  • Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico

Bibliografia

  • 1. MONTERROSO C., RODRÍGUEZ F., CHAVES R., DIEZ J., BECERRA-CASTRO C.C., KIDD P.S., MACIAS F. Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochem. 44, 3, 2014.
  • 2. SECRETARÍA DE ECONOMÍA. Reporte de coyuntura de la minería 2011. Available online at http://www.economia.gob.mx (accessed on 30 March 2013).
  • 3. VÁSQUEZ-MURRIETA, M.S., MIGUELES-GARDUNNO I., FRANCO-HERNANDEZ O., GOVAERTS B., DENDOOVEN L. C and N mineralization and microbial biomass in heavy-metal contaminated soil. Eur. J. Soil. Biol. 42 (2), 89, 2006.
  • 4. HERNÁNDEZ-HERNÁNDEZ A., LÓPEZ-LUNA J., GONZÁLEZ-TERREROS E. Heavy metals quantification in community soils impacted by mining activities in the northern mountains of Oaxaca, México. Environ. Sci. Ind. J. 7, 343, 2012.
  • 5. PHAENARK C., POKETHITIYOOK P., KRUATRACHUE M., NGERNSANSARUAY C. Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int. J. Phytoremediat. 11 (5), 479, 2009.
  • 6. KUMAR G.H., KUMARI J.P. Heavy metal lead influative toxicity and its assessment in phytoremediating plants a review. Water Air Soil Poll. 226 (10), 324, 2015.
  • 7. GIORDANI C., CECCHI S., ZANCHI C. Phytoremediation of soil polluted by nickel using agricultural crops. Environ. Manage. 36 (5), 675, 2005.
  • 8. MELO E.E.C., GUILHERME L.R.G., NASCIMENTO W.A.C., PENHA, H.G.V. Availability and accumulation of arsenic in oilseeds grown in contaminated soils. Water Air Soil Poll. 223 (1), 233, 2012.
  • 9. WEERADEJ M., PRAYAD P., MALEEYA K., PHANWIMOL T., RATTANAWAT C. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int. J. Phytoremediat. 14 (9), 925, 2012.
  • 10. ORTEGA-LARROCEA M.P., XOCONOSTLE-CÁZARES B., MALDONADO-MENDOZA I.E., CARRILLO-GONZÁLEZ R., HERNÁNDEZ-HERNÁNDEZ J., DÍAZ-GARDUÑO M., LÓPEZ-MEYER M.M., GÓMEZ-FLORES L., GONZÁLEZ-CHÁVEZ C.A. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapán, Hidalgo, Mexico. Environ Pollut. 158 (5), 1922, 2010.
  • 11. LIM T.K. Ricinus communis. In Edible Medicinal And Non-Medicinal Plants: Fruits, 1st ed.; Springer Science and Business Media B.V., Heidelberger platz 3, d-14197 Berlin, Germany, 2, 484, 2012.
  • 12. LAVANYA C., MURTHY I.Y.L.N., NAGARAJ G., MUKTA N. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenerg. 39, 204, 2012.
  • 13. PERDOMO F.A., ACOSTA-OSORIO A.A., HERRERA G., VASCO-LEAL J.S., MOSQUERA-ARTAMONOV J.D., MILLAN-MALO B., RODRIGUEZ-GARCÍA M.D. Physicochemical characterization of seven Mexican Ricinus communis L. seeds and oil contents. Biomass Bioenerg. 48, 17, 2013.
  • 14. JABEEN S., TAHIR S.M., KHAN S., QASIM H.M. Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan. J. Med. Plants Res. 4 (7), 559, 2010.
  • 15. BODA R.K., PRASAD M.N.V. Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. The Euro. Biotech. Journal. 1 (2), 101, 2017.
  • 16. KNOTHE G.H. Biodiesel and its properties. In Industrial Oil Crops, McKeon, T.A., Hayes, D.G., Hildebrand, D.F., Weselake, R.J., Eds. Urbana, IL: AOCS Press. 15, 2016.
  • 17. ALGUACIL M.M., TORRECILLAS E., HERNÁNDEZ G., ROLDÁN A. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical System. Plos ONE. 7 (4), e34887, 2012.
  • 18. BAUDDH K., SINGH K., BHASKAR S., SINGH R.P. Ricinus communis: A robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84, 640, 2015.
  • 19. BELLINI G., SUMNER M.E., RADCLIFFE D.E., QAFOKU N.P. Anion transport through columns of highly weathered acid soil: Adsorption and retardation. Soil Sci. Soc. Am. J. 60 (1), 132, 1996.
  • 20. CLEMENSSON L., PERSSON H. Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods. Plant Soil. 139 (1), 39, 1992.
  • 21. AGUILAR-CHÁVEZ A., DÍAZ-ROJAS M., CÁRDENAS-AQUINO M.D., DENDOOVEN L., LUNA-GUIDO G.M. Greenhouse gas emissions from a wastewater sludgeamended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 52, 90, 2012.
  • 22. SAS INSTITUTE. Statistic Guide for Personal Computers. Version 6.0. (eds.). SAS Institute, Inc., Cary. 1989.
  • 23. WU X.H., ZHANG H.S., GANG L., LIU X.C., QIN P. Ameliorative effect of castor bean (Ricinus communis L.) planting on physicochemical and biological properties of seashore saline soil. Ecol. Eng. 38, 97, 2012.
  • 24. FRANCO-HERNÁNDEZ M.O., VASQUEZ-MURRIETA M.S., PATIÑO-SICILIANO A., DENDOOVEN L. Heavy metals concentration in plants growing on mine tailings in Central México. Bioresource Technol. 101 (11), 3864, 2010.
  • 25. LINDSAY W L. Chemical Equilibria in Soil. Wiley Interscience, New York, USA,. Pp. 315-326, 1979.
  • 26. MITCHELL P., BARR D. The nature and significance of public exposure to arsenic a review of its relevance to South-West England. Environ. Geochem. Hlth. 17 (2), 57, 1995.
  • 27. OLOWU R.A., ADEWUYI G.O., ONIPEDE O.J., LAWAL O.A., SUNDAY O.M. Concentration of heavy metals in root, stem and leaves of Acalypha indica and Panicum maximum Jacq from three major dumpsites in Ibadan metropolis, South West Nigeria. Am. J. Chem. 5 (1), 40, 2015.
  • 28. SAGHALI M., HOSEINI S.M., HOSSEINI S.A., BAQRAF R. Determination of heavy metal (Zn, Pb, Cd and Cr) concentration in benthic fauna tissues collected from the southeast Caspian Sea, Iran. B. Environ. Contam. Tox. 92 (1), 57, 2014.
  • 29. SANCHEZ-LÓPEZ A.S., CARRILLO-GONZÁLEZ R., GONZÁLEZ-CHÁVEZ M.D.A., ROSAS-SAITO G.H., VANGRONSVELD J. Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ. Pollut. 205, 33, 2015.
  • 30. MASSAS I., KALIVAS D., EHALIOTIS C., GASPARATOS D. Total and available heavy metal concentrations in soils of Thriassio plain (Greece) and assessment of soil pollution indexes. Environ. Monit. Assess. 185 (8), 6751, 2013.
  • 31. WANG S., ZHAO Y., GUO J., ZHOU L. Effects of Cd, Cu and Zn on Ricinus communis L. Growing in single elemento r co-contaminated soils: Pot experiments. Ecol. Eng. 90, 347, 2016.
  • 32. EPSTEIN E., BLOOM J. Inorganic Components of Plants. In Mineral Nutrition of Plants: Principles and Perspectives, 2nd. Sunderland, Sinauer Associates. Sunderland, Massachusetts, USA, 41, 2004.
  • 33. KIRKBY E., RÖMHELD V. Micronutrients in Plant Physiology: Functions, Up-take and Mobility. Proceedings 543, The International Fertilizer Society, P.O. Box, York, United Kingdom, 52, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5a6cf2ab-f812-4398-9866-d75a3c231413
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.