PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Treatibility of wastewater containing 2,4 dichlorophenol using aclimated activated sludge microorganisms in packed upflow column bioreactor

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
2,4-Dichlorophenol (2,4-DCP) acclimated activated sludge culture was immobilized in polyurethane foam and supplemented to a packed upflow column bioreactor (PUCB) to treat 2,4-DCP containing wastewater. The impact of sludge age and 2,4-DCP concentration on biodegradation performance were studied. Results show that sludge age affected biodegradation in the PUCB. The residence time was adjusted by feeding with synthetic wastewater without DCP. The optimum phenol concentration was determined in 5-, 10-, and 15-day-old sludge. According to the results obtained, the removal of 99% phenol and 95% COD were determined in 10-day-old sludge and 500 mg/L 2,4-DCP concentration. Packing medium was examined both visually and by SEM, and a significant amount of organisms was observed accumulating on the surface, which indicated that diffusion limitations were controlling biofilm thickness.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.1997-2005,fig.,ref.

Twórcy

autor
  • Environmental Engineering Department, Engineering Faculty, Nigde Omer Halisdemir University, Central Campus, Nigde, Turkey

Bibliografia

  • 1. Huang D.L., Wang C., Xu P., Zeng G.M., Lu B.A., Li N.J., Huang C., Lai C., Zhao M H., Xu J.J., Luo X.Y. A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe₃O₄ system, Int Biodeter Biodegr. 97, 115, 2015.
  • 2. Bera S., Roy A.S., Mohanty K. Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site, Int Biodeter Biodegr. 121, 107, 2017.
  • 3. Hamitouche A., Amrane A., Bendjama Z., Kaouah F. Effect of the Ammonium Chloride Concentration on the Mineral Medium Composition - Biodegradation of Phenol by a Microbial Consortium, Int J Environ Res. 4 (4), 849, 2010.
  • 4. Liu Y.J., Zhang A.N., Wang X.C. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp XA05 and Sphingomonas sp FG03, Biochem Eng J. 44 (2-3), 187, 2009.
  • 5. Li J.H., Wang W., Moe B., Wang H.L., Li X.F. Chemical and Toxicological Characterization of Halobenzoquinones, an Emerging Class of Disinfection Byproducts, Chem Res Toxicol. 28 (3), 306, 2015.
  • 6. Liu Y.J., Nikolausz M., Wang X.C. Biodegradation and detoxication of phenol by using free and immobilized cells of Acinetobacter sp XA05 and Sphingomonas sp FG03, J Environ Sci Heal A. 44 (2), 130, 2009.
  • 7. Pramparo L., Suarez -Ojeda M.E., Perez J., Carrera J. Kinetics of aerobic biodegradation of dihydroxybenzenes by a p-nitrophenol-degrading activated sludge, Bioresource Technol. 11, 057, 2012.
  • 8. Bajaj M., Gallert C., Winter J. Phenol degradation kinetics of an aerobic mixed culture, Biochem Eng J. 46 (2), 205, 2009.
  • 9. Lin Y.H. Biodegradation of 2,4-Dichlorophenol by Mixed Culture in an Aerobic Fixed-Biofilm Process-Kinetic Model and Reactor Performance, Environ Eng Sci. 32 (6), 516, 2015.
  • 10. Huang Z.Z., Chen G.Q., Zeng G.M., Guo Z., He K., Hu L., Wu J., Zhang L.H., Zhu Y., Song Z.X. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium, J Hazard Mater. 321, 37, 2017.
  • 11. Singh B., Singh K. Microbial degradation of herbicides, Crit Rev Microbiol. 42 (2), 245, 2016.
  • 12. Song J.X., Wang W.B., Li R.J., Zhu J., Zhang Y.M., Liu R., Rittmann B.E. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP), Biodegradation. 27 (1), 59, 2016.
  • 13. Saravanan P., Pakshirajan K., Saha P. Biodegradation kinetics of phenol by predominantly Pseudomonas sp in a batch shake flask, Desalin Water Treat. 36 (1-3), 99, 2011.
  • 14. Kobayashi F., Daidai M., Suzuki N., Nakamura Y. Degradation of phenol in seawater using a novel microorganism isolated from the intestine of Aplysia kurodai, Int Biodeter Biodegr. 59 (3), 252, 2007.
  • 15. Zhao G.Z., Zhou L.C., Li Y.F., Liu X.X., Ren X.J., Liu X.L. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor, J Hazard Mater. 169 (1-3), 402, 2009.
  • 16. Nuhoglu A., Yalcin B. Modelling of phenol removal in a batch reactor, Process Biochem. 40 (3-4), 1233, 2005.
  • 17. Ma F., Guo J.B., Zhao L.J., Chang C.C., Cui D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater, Bioresource Technol. 100 (2), 597, 2009.
  • 18. Gonzalez G., Herrera M.G., Garcia M.T., Pena M.M. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors, Bioresource Technol. 76 (3), 245, 2001.
  • 19. Ucun H., Yildiz E., Nuhoglu A. Phenol biodegradation in a batch jet loop bioreactor (JLB): Kinetics study and pH variation, Bioresource Technol. 101 (9), 2965, 2010.
  • 20. Yusoff N., Ong S.A., Ho L.N., Wong Y.S., Saad F.N. M., Khalik W., Lee S.L. Evaluation of biodegradation process: Comparative study between suspended and hybrid microorganism growth system in sequencing batch reactor (SBR) for removal of phenol, Biochem Eng J. 115, 14, 2016.
  • 21. Moussavi G., Mohseni M. The treatment of waste air containing phenol vapors in biotrickling filter, Chemosphere. 72 (11), 1649, 2008.
  • 22. Gomez M., Murcia M.D., Ortega S., Barbosa D.S., Vaya G., Hidalgo A.M. Removal of 4-chlorophenol in a continuous membrane bioreactor using different commercial peroxidases, Desalin Water Treat. 37 (1-3), 97, 2012.
  • 23. Al-Zuhair S., El-Naas M. Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations, Biochem Eng J. 56 (1-2), 46, 2011.
  • 24. Wang X., Ruckenstein E. Immobilization of Phanerochaete-Chrysosporium on Porous Polyurethane Particles with Application to Biodegradation of 2-Chlorophenol, Biotechnol Tech. 8 (5), 339, 1994.
  • 25. Patel B.P., Kumar A. Biodegradation of 2,4-dichlorophenol in Packed-Bed Biofilm Reactor: Effect of Hydraulic Retention Time, Biogenic Substrate, and Loading Rate, Water Environ Res. 88 (12), 2191, 2016.
  • 26. Dizge N., Tansel B., Sizirici B. Process intensification with a hybrid system: A tubular packed bed bioreactor with immobilized activated sludge culture coupled with membrane filtration, Chem Eng Process. 50 (8), 766, 2011.
  • 27. Eaton A.D., Clesceri L.S., Rice E.W., Greenberg A.E. Standard Methods for the Examination of Water and Wastewater (21 st ed.),, American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) Washington D.C., USA, pages 2005.
  • 28. Tien C.J., Huang H.J., Chen C.S. Accessing the Carbofuran Degradation Ability of Cultures From Natural River Biofilms in Different Environments, Clean-Soil Air Water. 45 (5), 2017.
  • 29. Snell D.F., Hilton C.L. Encyclopedia of Industrial Chemical Analysis, Interscience Publishers New York, pages 1968.
  • 30. Tommassen G. On the correlation between Turbidity, Conductivity and COD, Technische Universiteit Delft, Germany, 2014.
  • 31. Abuhamed T., Bayraktar E., Mehmetoglu T., Mehmetoglu U. Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation, Process Biochem. 39 (8), 983, 2004.
  • 32. Jiang Y., Wen J.P., Bai J., Jia X.Q., Hu Z.D. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis, J Hazard Mater. 147 (1-2), 672, 2007.
  • 33. Gallizia I., McClean S., Banat I.M. Bacterial biodegradation of phenol and 2,4-dichlorophenol, J Chem Technol Biot. 78 (9), 959, 2003.
  • 34. Sahinkaya E., Dilek F.B. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge - Evaluation of biokinetic coefficients, Environ Res. 99 (2), 243, 2005.
  • 35. Patel B.P., Kumar A. Biodegradation of 2,4-dichlorophenol by Bacillus endophyticus strain: optimization of experimental parameters using response surface methodology and kinetic study, Desalin Water Treat. 57 (34), 15932, 2016.
  • 36. Dizge N., Tansel B. External mass transfer analysis for simultaneous removal of carbohydrate and protein by immobilized activated sludge culture in a packed bed batch bioreactor, J Hazard Mater. 184 (1-3), 671, 2010.
  • 37. Quan X.C., Shi H.C., Wang J.L., Qian Y. Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture, Chemosphere. 50 (8), 1069, 2003.
  • 38. Kargi F., Eker S. Kinetics of 2,4-dichlorophenol degradation by Pseudomonas putida CP1 in batch culture, Int Biodeter Biodegr. 55 (1), 25, 2005.
  • 39. Eker S., Kargi F. Biological treatment of 2,4,6-trichlorophenol (TCP) containing wastewater in a hybrid bioreactor system with effluent recycle, J Environ Manage. 90 (2), 692, 2009.
  • 40. Uysal A., Turkman A. Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an activated sludge bioreactor, Process Biochem. 40 (8), 2745, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5a617e67-60f5-4d09-84ce-5a9eedd0190a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.