PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Comparative analysis of pre-germination and post-germination inoculation treatments of Zea mays L. to mitigate chromium toxicity in Cr-contaminated soils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The release of heavy metals in the environment is a serious threat causing health hazards to living beings. Hence, it is essential to remediate chemical contamination for a safe environment. Bioremediation is considered one of the most cost-effective and sustainable agricultural techniques, in contrast with other conventional methods to reduce chromium toxicity in agricultural lands polluted with chromium, as it is a natural way to mitigate the toxic effects of hexavalent chromium with simultaneous amelioration in the growth of plants. In the current study, an attempt was made to reduce toxicity of chromium by using six plant growth-promoting chromium-resistant bacteria (Bacillus pumilus (ALa), Bacillus atrophaeus (BL2), Bacillus cereus (AR), Staphylococcus lentus (E3), T2aii and W6ii) for enhancing the growth of Zea mays L. in soil contaminated with chromium. In this regard, a pot experiment was conducted with pre-germination and post-germination inoculation treatments to Zea mays seeds in the presence of chromium stress, i.e., 200, 400, and 600 µg/ml. Our results have shown that toxicity of chromium caused a reduction in photosynthetic pigments and protein content together with reduction in growth parameters of plants, while treatments with chromium-resistant PGPB significantly enhanced chromium tolerance in treated plants compared with non-inoculated treatments in the presence of chromium stress. The present investigation suggests that applying post-germination inoculation treatments is an effective technique for improved plant growth and heavy metal alleviation in metal-contaminated soil. Thus, our current work revealed an incentive approach toward the green revolution in the age of industrialization by exploring beneficial chromium-tolerant auxin-producing microbes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.597-607,fig.,ref.

Twórcy

autor
  • Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
autor
  • Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
autor
  • Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan

Bibliografia

  • 1. TCHOUNWOU P.B., YEDJOU C.G., PATLOLLA A.K. AND SUTTON D.J. Heavy metal toxicity and the environment. In: Molecular, Clinical and Environmental Toxicology, Springer Basel, 101, 133, 2012.
  • 2. SAYEL H., JOUTEY N.T., BAHAFID W., EL GHACHTOULI N. Chromium resistant bacteria: impact on plant growth in soil microcosm. Arch. Environ. Prot. 40 (2), 81, 2014.
  • 3. SARWAR N., IMRAN M., SHAHEEN M.R., ISHAQ W., KAMRAN A., MATLOOB A., REHIM A., HUSSAIN S. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171, 710, 2016.
  • 4. KAMRAN M.A., BIBI S., XU R.K., HUSSAIN S., MEHMOOD K., CHAUDHARY H. Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. J. Geochem. Explor. doi: org/10.1016/j.gexplo.2016.09.005, 2016.
  • 5. ISLAM F., YASMEEN T., ARIF M.S., RIAZ M., SHAHZAD S.M., IMRAN Q. ALI I. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem.108, 456, 2016.
  • 6. AHEMAD M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Genet. Eng. Biotechnol. J. 13 (1), 51, 2015.
  • 7. SANTOYO G., MORENO-HAGELSIEB G., DEL CARMEN OROZCO-MOSQUEDA M., GLICK B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92, 2016.
  • 8. DE-SOUZA R. AMBROSINI A. PASSAGLIA L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38 (4), 401, 2015.
  • 9. BENSIDHOUM L., NABTI E., TABLI N., KUPFERSCHMIED P., WEISS A., ROTHBALLER M., SCHMID M., KEEL C., HARTMANN A. Heavy metal tolerant Pseudomonas protegensisolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur. J. Soil Biol.75, 38, 2016.
  • 10. MEHNAZ S., KOWALIK T., REYNOLDS B., LAZAROVITS G. Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil. Biol. Biochem.42 (10), 1848, 2010.
  • 11. FATIMA H., AHMED A. How chromium-resistant bacteria can improve corn growth in chromium-contaminated growing medium. Pol. J. Environ. Stud. 25 (6), 2357, 2016.
  • 12. JAMIL N. Enzymatic and biochemical analysis of inoculated and non-inoculated plants grown under chromium stress using Triticum aestivum., University of the Punjab, Lahore; 58, Pakistan, 2016.
  • 13. ASLAM T. Screening for lead-resistant PGPR and their application to reduce lead toxicity in plants., University of the Punjab, Lahore; 39, Pakistan, 2015.
  • 14. AHMED A., HASNAIN S. Auxin producing Bacillus sp.: Auxin quantification and effect on the growth Solanum tuberosum. Pure Appl. Chem. 82 (1), 313, 2010.
  • 15. VAISHNAV A., KUMARI S., JAIN S., VARMA, CHOUDARY D.K. Putative bacterial volatile-mediated growth in soyabean (Glycine max L Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 199, 539, 2015.
  • 16. LOWRY O.H., RESEBROUGH N.J., FARR A.L. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 17. SOBARIU D.L., FERTU D.I.T., DIACONU M., PAVEL L.V., HLIHOR R.M., DRAGOI E.N., CURTEANU S., LENZ M., CORVINI P.F.X., GAVRILESCU M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. N. Biotechnol. doi: org/10.1016/j.nbt.2016.09.002, 2016.
  • 18. SHAHID M., SHAMSHAD S., RAFIQ M., KHALID S., BIBI I., NIAZI N.K., DUMAT, C.RASHID M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 178, 513, 2017.
  • 19. NOUMAVO P.A., AGBODJATO N.A., BABA-MOUSSA F., ADJANOHOUN, A., BABA-MOUSSA L. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. Afr. J. Biotechnol. 15 (27), 1452, 2016.
  • 20. PREMACHANDRA D., HUDEK L., BRAU L. Bacterial modes of action for enhancing of plant growth. J. Biotechnol. Biomater.6 (3), 1, 2016.
  • 21. ULLAH A., HENG S., MUNIS M.F.H., FAHAD S., YANG X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exper. Bot.117, 28, 2015.
  • 22. MAQBOOL Z., ASGHAR H.N., SHAHZAD T., HUSSAIN S., RIAZ M., ALI S., ARIF M.S., MAQSOOD M. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicol. Environ. Saf.114, 343, 2015.
  • 23. DHAL B. THATOI H.N., DAS N.N., PANDEY B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J. Hazard. Mater.250, 272, 2013.
  • 24. VIRUEL E., ERAZZÚ L.E., MARTÍNEZCALSINA, L., FERRERO M.A., LUCCA M.E., SIÑERIZ F. Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. J. Soil Sci. Plant. Nutr. 14 (4), 819, 2014.
  • 25. HUANG Y., FENG H., LU H., ZENG Y. A thorough survey for Cr-resistant and/or-reducing bacteria identified comprehensive and pivotal taxa. Int. Biodeterior. Biodegradation. 117, 22, 2017.
  • 26. VAFADAR F., AMOOAGHAIE R., OTROSHY M. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J. Plant Interact. 9 (1), 128, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-589d1ee0-f1f3-42f1-b0e3-ff4f45754772
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.