PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 12 |

Tytuł artykułu

Heterologous expression of Populus euphratica CPD (PeCPD) can repair the phenotype abnormity caused by inactivated AtCPD through restoring brassinosteroids biosynthesis in Arabidopsis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To get insights into the functional difference of CPD (constitutive photomorphogenesis and dwarfism) between herb and woody plants, a full-length Populus euphratica L. cDNA homologous to Arabidopsis thaliana CPD (AtCPD), named PeCPD, was introduced to Arabidopsis thaliana cpd mutant (CM) and corresponding wild type (WT), resulting in a series of CM-PeCPD and WT-PeCPD transgenic lines. All the CM-PeCPD lines differentially displayed evident restoration in phenotype and fertility compared to cpd mutant, but still showed differences from WT in some respects. All the WT-PeCPD lines displayed obvious overexpression phenotype compared to WT plants. The transcription levels (TLs) of PeCPD in the CM-PeCPD lines were positively correlated, and that in the WT-PeCPD lines uncorrelated, with the level of their phenotype restoration/change. In the CM-PeCPD lines, the TLs of AtDWF4, AtBR6OX2 and AtTCH4 were negatively, and of AtBAS1 and AtSAUR-AC1 positively correlated with PeCPD TLs, whereas in the WT-PeCPD lines, their TLs were uncorrelated, and positively or negatively correlated to PeCPD TLs. The level of total endogenous BRs was basically negatively correlated to the level of phenotype restoration/change and PeCPD TLs in the PeCPD transgenic plants. The findings indicate that PeCPD also plays important role in regulation of plant growth and development through participating in BR biosynthesis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

12

Opis fizyczny

p.3123-3135,fig.,ref.

Twórcy

autor
  • Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
autor
  • Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
autor
  • Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
autor
  • Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
autor
  • Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China

Bibliografia

  • Bancos S, Nomura T, Sato T, Molnár G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513
  • Bishop GJ, Harrison K, Jones J (1996) The tomato dwarf gene isolated by heterologous transposon tagging encodes the first member of a new Cytochrome P450 Family. Plant Cell 8:959–969
  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant cell 10:231–244
  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26(6):573–582
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451
  • Du J, Yin H, Zhang S, Wei Z, Zhao B, Zhang J, Gou X, Lin H, Li J (2012) Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in Arabidopsis thaliana. J Integr Plant Biol 54:388–399
  • Fujioka S, Choi Y-H, Takatsuto S, Yokota T, Li J, Chory J, Sakurai A (1996) Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana. Plant Cell Physiol 37:1201–1203
  • Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939
  • Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol 104(2):777–784
  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130(3):1319–1334
  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217
  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910
  • Jager CE, Symons GM, Nomura T, Yamada Y, Smith JJ, Yamaguchi S, Kamiya Y, Weller JL, Yokota T, Reid JB (2007) Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiol 143:1894–1904
  • Kim G-T, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leafcells. Genes Dev 12:2381–2391
  • Kim G-T, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005a) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721
  • Kim T-W, Hwang J-Y, Kim Y-S, Joo S-H, Chang SC, Lee JS, Takatsuto S, Kim S-K (2005b) Arabidopsis CYP85A2, a cytochrome P450, mediates the baeyer-villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412
  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140(2):548–557
  • Lisso J, Steinhauser D, Altmann T, Kopka J, Müssig C (2005) Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Res 33(8):2685–2696
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497
  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772
  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201–210
  • Nomura T, Bishop G (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421–432
  • Nomura T, Nakayama Reid MJB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31–37
  • Ohnishi T, Szatmari A-M, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006) C-23 hydroxylation by arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288
  • Ohnishi T, Yokota T, Mizutani M (2009) Insights into the function and evolution of P450s in plant steroid metabolism. Phytochem 70:1918–1929
  • Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287: 31551–31560
  • Sakamoto T, Matsuoka M (2006) Characterization of constitutive photomorphogenesis and dwarfism homologs in rice (Oryza sativa L). J Plant Growth Regul 25:245–251
  • Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinosteroids. Biosci Biotech Biochem 61:757–762
  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid 6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126(2):770–779
  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131(1):287–297
  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182
  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790
  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22(3):259–271
  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133(4):1643–1653
  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34
  • Wu HJ (2012) Cloning and function analysis of Populus euphratica brassinosteroids biosynthase gene CPD (PeCPD). a Ph.D Dissertation of Lanzhou University
  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7(10):1555–1567
  • Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5757a579-ac4d-4e8b-ba32-42a069f7013b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.