PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 56 | 4 |

Tytuł artykułu

Plants and their chemical compounds affecting betha-amyloid and secretase activity as potential sources of neuroprotective herbal medicinal products. Part 1

Treść / Zawartość

Warianty tytułu

PL
Rośliny i ich związki chemiczne wpływające na beta-amyloid i aktywność sekretaz jako potencjalne źródła neuroprotekcyjnych produktów ziołowych. Część 1

Języki publikacji

EN

Abstrakty

EN
Plant preparations, especially fractions of biologically active compounds may play an important role in improving the life quality of patients with diagnosed dementia as well as delaying the progress of neurodegenerative diseases through various mechanisms of pharmacological action. Recent years have brought a number of reports on the issue, nevertheless, it seems that there is still a lack of detailed, synthetical analysis. So far, main biological markers of Alzheimer’s disease pathogenesis which is currently the most common form of dementia, are the β-amyloid plaques deposits, neurofibrillary degeneration processes and atrophy of cholinergic neurons in the brain regions crucial for memory processes maintenance. At present, acetylcholinesterase inhibitors are the main drugs for the treatment of Alzheimer’s disease. In our previous review article, we pointed out the interesting mechanisms of action such as inhibition of acetyl-, butyrylcholinesterases and the antioxidant activity of bio-compounds of selected medicinal plants from Lamiaceae family (including rosmarinic acid). The aim of this paper is to systematize the knowledge about the influence of plant extracts and isolated natural compounds (e.g. cryptotanshinone, epigallocatechin gallate) on the pathway of β-amyloid formation and deposition in pharmacological models, especially by interacting with the brain enzyme, α- and β-, γ-secretase or on their genes expression. This is a long-established trend of research in search of new neuroprotective drugs from natural sources which raises new therapeutic hopes. Salvia miltiorrhiza and Camellia sinensis, medicinal plants from Asia, have interesting therapeutic potential in neurodegenerative disorders. In addition to them, there are known at least 10 Asian plants extensively researched in this area (e.g. Aralia cordata, Magnolia officinalis, Perilla frutescens, Polygala tenuifolia, Punica granatum, Sophora flavescens). However, due to the fact that many aspects of their phytochemical, neurochemical and pharmacological activities are not well known, further studies should be performed in this field.
PL
Przetwory roślinne, a szczególnie frakcje związków biologicznie czynnych mogą odgrywać doniosłą rolę w poprawianiu jakości życia pacjentów z otępieniem, a także opóźniać postępy chorób neurodegeneracyjnych na drodze różnych mechanizmów ich farmakologicznego działania. Ostatnie lata przyniosły szereg opracowań i naukowych badań, jednak wydaje się, że w dalszym ciągu brakuje szczegółowej, syntetycznej analizy na ten temat. Głównymi markerami biologicznymi procesu patogenetycznego choroby Alzheimera, będącej najczęstszą postacią otępienia są, jak dotąd, odkładające się płytki β-amyloidu, zwyrodnienie neurofibrylarne oraz zaniki neuronów cholinergicznych w kluczowych dla pamięci regionach mózgu. Obecnie w leczeniu choroby Alzheimera stosuje się głównie leki z grupy inhibitorów acetylocholinoesterazy. W naszym poprzednim artykule przeglądowym zwróciliśmy uwagę na interesujące mechanizmy działania biozwiązków wybranych roślin z rodziny Lamiaceae, np. hamowanie acetylo-, i butyrylocholinoesterazy czy ich działanie 107 Vol. 56 No. 4 2010 Plants and their chemical compounds affecting β-amyloid and secretase activity antyoksydacyjne. Celem niniejszego artykułu przeglądowego jest analiza wyników dotyczących oddziaływania roślinnych ekstraktów oraz wyizolowanych roślinnych związków chemicznych (m.in. kryptotanszinonów, galusanu epigalokatechiny EGCG ) na szlak powstawania i odkładania β-amyloidu w modelach farmakologicznych, między innymi poprzez interakcję z α-, β-, γ- sekretazą (zarówno na poziomie genomowym jak i białkowym). Jest to jeden z głównych nurtów poszukiwania nowych leków ze źródeł naturalnych o działaniu neuroprotekcyjnym. Wydaje się, że Salvia miltiorrhiza oraz Camelia sinensis są roślinami leczniczymi pochodzącymi z Azji posiadającymi odpowiedni potencjał terapeutyczny w tym względzie. Oprócz nich znanych jest co najmniej 10 azjatyckich roślin intensywnie badanych pod kątem prewencji chorób neurodegeneracyjnych (m.in. Aralia cordata, Magnolia officinalis, Perilla frutescens, Polygala tenuifolia, Punica granatum, Sophora flavescens). Jednak wiele aspektów ich działania jest niezbyt dobrze poznanych, dlatego istnieje potrzeba przeprowadzenia dalszych badań zarówno fitochemicznych, jak i farmakologicznych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

56

Numer

4

Opis fizyczny

p.91-107,fig.,ref.

Twórcy

autor
  • Department of Pharmacology and Experimental Biology, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
autor

Bibliografia

  • 1. W imo A, Prince M. Alzheimer’s Disease International World Alzheimer Report 2010. The GlobalEconomic Impact of Dementia. Alzheimer’s Disease International, London. 2010:1-56.
  • 2. R afii MS, Aisen PS. Recent developments in Alzheimer’s disease therapeutics. BMC Med 2009;7:7.
  • 3. Ożarowski M, Mikołajczak PŁ, Bobkiewicz-Kozłowska T, Kujawski R, Mrozikiewicz PM. Neuroactive compounds from medicinal plants of the Lamiaceae family showing potentally beneficial activity in treatment of Alzheimer’s disease. Herba Pol 2009; 55(4):148-63.
  • 4. S alloway S, Mintzer J, Weiner MF, Cummings JL. Disease-modifying therapies in Alzheimer’s disease. Alzheimer’s & Dementia 2008; 4:65-79.
  • 5. S elkoe DJ . Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature (Suppl.) 1999; 399:A23-A31.
  • 6. S elkoe DJ . Alzheimer’s disease: genes, proteins, and therapy. Physiological Rev 2002; 81(2):741-66.
  • 7. Fraering PC. Structural and functional determinants of β-secretase, an intramembrane protease implicated in Alzheimer’s disease. Curr Genom 2007; 8:531-49.
  • 8. W illem M, Lammich S, Haass C. Function, regulation and therapeutic properties of β-secretase (BACE 1) Semin. Cell Dev Biol 2009; 20:175-82.
  • 9. Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 2004; 11(5):456-67.
  • 10. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580):353-6.
  • 11. S obów T, Flirski M, Liberski PP. Amyloid-beta and tau proteins as biochemical markers of Alzheimer’s disease. Acta Neurobiol Exp 2004; 64:53-70.
  • 12. Ożarowski M, Kupsz J, Torlińska T. Biologiczne czynniki ryzyka choroby Alzheimera. Nowiny Lek 2006; 2(75):193-8.
  • 13. D elacourte N, Sergeant N, Robitaille Y, Buee-Scherrer V, Buee L, Bussiere DT, Vermersch P, Hof PR, Gauvreau D, Wattez A. Pathological tau proteins are biochemical markers that differentiate several types of neurofibrillary degeneration. In: Iqbal K, Nishimura T, Takeda M, Wiśniewski HM. (eds.). Alzheimer’s disease: biology, diagnosis and therapeutics. New York 1997:205-12.
  • 14. S kovronsky DM, Lee VMY, Trojanowski JQ. Neurodegenerative diseases: new concepts of pathogenesisand their therapeutic implications. Annu Rev Pathol Mech Dis 2006; 1:151-70.
  • 15. Tillement JP, Lecanu L, Papadopoulos V. Amyloidosis and neurodegenerative diseases: current treatments and new pharmacological options. Pharmacology 2010; 85:1-17.
  • 16. W estermark P. et al. A primer of amyloid nomenclature. Amyloid 2007, 14(3):179-83. 17. Pezzini A, Padovani A. Cerebral amyloid angiopathy-related hemorrhages. Neurol Sci 2008; 29:S260-S263.
  • 18. C hiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Ann Rev Biochem 2006; 75:333-66.
  • 19. Head E. Down syndrome and beta-amyloid deposition. Curr Opinion Neurol 2004; 17(2):95-100. 20. D e Strooper B, Vassar R, Goldeet T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010; 6:99-107.
  • 21. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997; 77:1081-132.
  • 22. Taylor CJ , Ireland DR , Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK , Tate WP, Abraham WC . Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 2008; 31:250-60.
  • 23. Meziane H, Dodart JC , Mathis C, Little S, Clemens J, Paul SM, Ungerer A. Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci 1998; 95:12683-8.
  • 24. Morimoto T, Ohsawa I, Takamura C, Ishiguro M, Nakamura Y, Kohsaka S. Novel domain-specific actions of amyloid precursor protein on developing synapses. J Neurosci 1998; 18: 9386-93.
  • 25. Furukawa K, Barger SW , Blalock EM, Mattson MP. Activation of K+channels and suppression of neuronal activity by secreted beta-amyloid precursor protein. Nature 1996; 379:74-8.
  • 26. Hussain I, Powell D, Howlett DR , Tew DG , Meek TD, Chapman C, Gloger IS , Murphy KE , Southan CD , Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G. Identification of a novel aspartic protease (Asp2) as betasecretase. Mol Cell Neuosci 1999; 14:419-27.
  • 27. Y an R, Munzner JB, Shuck ME, Bienkowski MJ. BACE 2 functions as an alternative alphasecretase in cells. J Biol Chem 2001; 276:34019-27.
  • 28. W ong P. Beta-amyloid modulation role of BACE 1 and BACE 2. Basic Research Overview. Johns Hopkins University School of Medicine. Alzheimer’s Disease Research Center.http://www.alzresearch.org/ basicresearch.cfm (02.12.2010)
  • 29. C ole SL, Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE 1. Mol Neurodegeneration 2007; 2(22):1-25.
  • 30. He G, Luo W, Li P, Remmers C, Netzer WJ , Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP, Greengard P. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 2010; 46:95-8.
  • 31. S teiner H, Fluhrer R, Haass C. Intramembrane proteolysis by gamma-secretase. J Biol Chem 2008; 283:29627-31.
  • 32. C how VW, Savonenko AV, Melnikova T, Kim H, Price DL, Li T, Wong PC. Modeling an anti-amyloid combination therapy for Alzheimer’s disease. Sci Transl Med 2010; 2(13):13ra1.
  • 33. W iśniewski T, Sadowski M. Preventing β-amyloid fibrillization and deposition: β-sheet breakers and pathological chaperone inhibitors. BMC Neurosci 2008; 9(Suppl 2):S5.
  • 34. C hoi SH, Hur JM, Yang EJ , Jun M, Park HJ, Lee KB, Moon E, Song KS . Beta-secretase (BACE 1) inhibitors from Perilla frutescens var. acuta. Arch Pharm Res 2008; 31(2):183-7.
  • 35. Z hou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005; 45:1345–59.
  • 36. W u MH, Tsai WJ , Don MJ, Chen YC , Chen IS , Kuo YC . Tanshinlactone A from Salvia miltiorrhiza modulates interleukin-2and interferon-γ gene expression. J Ethnopharmacol 2007; 113:210-17.
  • 37. Z hang Y, Li X, Wang Z. Antioxidant activities of leaf extract of Salvia miltiorrhiza Bunge and related phenolic constituents. Food Chem Toxicol 2010; 48(10):2656-62.
  • 38. Matkowski A, Zielińska S, Oszmiański J, Lamer-Zarawska E. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technol 2008; 99(16):7892-6.
  • 39. Lin TH, Hsieh CL. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin Med 2010; 5(22):1-6.
  • 40. Y u XY, Lin SG , Chen X, Zhou ZW , Liang J, Duan W, Chowbay B, Wen JY , Chan E, Cao J, Li CG , Zhou SF. Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer’s disease, across the blood-brain barrier. Curr Drug Metab 2007; 8(4):365-78.
  • 41. J in DZ , Yin LL, Ji XQ, Zhu XZ. Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. Eur J Pharmacol 2006; 549(1-3):166-72.
  • 42. R en Y, Houghton PJ, Hider RC , Howes MJ. Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorrhiza. Planta Med 2004; 70(3):201-4.
  • 43. Z hang L, Cao H, Wen J, Xu M. Green tea polyphenol (-)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr Neurosci 2009;12(4):142-8.
  • 44. K im DH, Jeon SJ , Jung JW , Lee S, Yoon BH, Shin BY,. Son KH, Cheong JH, Kim YS , Kang SS , Ko KH, Ryu JH. Tanshinone congeners improve memory impairments induced by scopolamine on passive avoidance tasks in mice, Eur J Pharmacol 2007; 574:140-7.
  • 45. Mei Z, Zhang F, Tao L, Zheng W, Cao Y, Wang Z, Tang S, Le K, Chen S, Pi R, Liu P. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alpha-secretase in vivo and in vitro. Neurosci Lett 2009; 452(2):90-5.
  • 46. Mei Z, Situ B, Tan X, Zheng S, Zhang F, Pengke Y, Peiqing L. Cryptotanshinione upregulates α-secretase by activation PI3K pathway in cortical neurons. Brain Res 2010; 1348:165-73.
  • 47. Z hen YS . (ed.). Tea. Bioactivity and Therapeutic Potential. Medicinal and Aromatic Plants–Industrial Profiles. Taylor & Francis e-Library, 2005.
  • 48. G ruenwald J, Brendler T, Jaenicke C. PDR for Herbal Medicines. Fourth edition. New York 2007:414-22.
  • 49. Blumberg J. Introduction to the proceedings of the third international scientific symposium on tea and human health: role of flavonoids in the diet. J Nutr 2003; 133:3244S-3246S.
  • 50. Ho CT, Lin JK , Shahidi F. (eds.). Tea and tea products. chemistry and health-promoting properties. Nutraceutical Science and Technology. New York 2008:1-9.
  • 51. W agner H, Bladt S. Plant Drug Analysis. A Thin Layer Chromatography Atlas. Second edition. Berlin- Heidelberg 2009.
  • 52. G uo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes, Biochim Biophys Acta 1996; 1304:210-22.
  • 53. Okello EJ , Savelev SU , Perry EK . In vitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother Res 2004; 18(8):624-7.
  • 54. Tsushida T, Murai T, Omori M, Okamoto J.. Production of a new type tea containing a high level of γ-aminobutyric acid. Nippon Nogeikagaku Kaishi 1987; 6:817-22. In: Ho Chi-Tang, Lin Jen-Kun, Shahidi Fereidoon (eds.). Tea and tea products. Chemistry and health-promoting properties. Nutraceutical Science and Technology. New York 2008:1-9.
  • 55. Lin CL, Chen TF, Chiu MJ, Way TD, Lin JK . Epigallocatechin gallate (EGCG ) suppresses β-amyloidinduced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK 3β activation. Neurobiol Aging 2009; 30:81-92.
  • 56. A bbas S, Wink M. Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomed 2010; 17(11):902-9.
  • 57. Mandel S, Reznichenko L, Amit T, Youdim MB. Green tea polyphenol (−)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res 2003; 5(6):419-24.
  • 58. Lee JH, Song DK , Jung CH et al. (–)-epigallocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular ca modulation in PC12 cells. Clin Exp Pharmacol Physiol 2004; 31:530-36.
  • 59. K ang KS , Wen Y, Yamabe N, Fukui M, Bishop SC , Zhu BT. Dual beneficial effects of (-)-epigallocatechin- 3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS ONE 2010;5(8): e11951. doi:10.1371/journal.pone.0011951.
  • 60. Lee YK , Yuk DY , Lee JW , Lee SY , Ha TY, Oh KW , Yun YP, Hong JT. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res 2009; 1250:164-74.
  • 61. He M, Zhao L, Wei MJ, Yao WF, Zhao HS, Chen FJ. Neuroprotective effects of (-)-epigallocatechin-3- gallate on aging mice induced by D-galactose. Biol Pharm Bull 2009; 32(1):55-60.
  • 62. Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against beta toxicity and PKC -dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASE B J 2003; 17(8):952-4.
  • 63. Lee SY , Kim CY , Lee JJ , Jung JG , Lee SR . Effects of delayed administration of (-)–epigallocatechin gallate, a green tea poliphenol on the chaanges in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull 2003; 61:399-406.
  • 64. R eznichenko L, Amit T, Youdim MBH, Mandel S. Green tea polyphenol (–)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite out growth. J Neurochem 2005: 93:1157-67.
  • 65. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (–)-epigallocatechin- 3-gallate prevents N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced dopaminergic eurodegeneration. J Neurochem 2001; 78:1073-82.
  • 66. Li R, Peng N, Du F, Li XP, Le WD . Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation. Nan Fang Yi Ke Da Xue Xue Bao 2006; 26(4):376-80.
  • 67. Tai KK , Truong DD . (-)-Epigallocatechin-3-gallate (EGCG ), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DD T)-induced cell death in dopaminergic SHSY -5Y cells. Neurosci Lett 2010; 482(3):183-7.
  • 68. Levites Y, Tamar A, Moussa YBH, Silvia M. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002; 277:30574-80.
  • 69. J ang S, Jeong HS, Park JS , Kim YS , Jin CY , Seol MB, Kim BC, Lee MC. Neuroprotective effects of (-)-epigallocatechin-3-gallate against quinolinic acid-induced excitotoxicity via PI3K pathway and NO inhibition. Brain Res 2010; 1313:25-33.
  • 70. R ezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. Green tea epigallocatechin-3-gallate (EGCG ) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005; 25(38):8807-14.
  • 71. J eon SY , Bae KH, Seong YH, Song KS . Green tea catechins as a BACE 1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 2003; 13:3905-8.
  • 72. G iunta B, Hou H, Zhu Y, Salemi J, Ruscin A, Shytle RD , Tan J. Fish oil enhances anti-amyloidogenic properties of green tea. EGCG in Tg2576 mice. Neurosci Lett 2010; 471:134-8.
  • 73. Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW , Shytle D, Town T, Tan J. ADA M10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 2006; 281(24):16419-27.
  • 74. Z hang Z-J. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 2004; 75:1659-99.
  • 75. G iacobini E. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochem Res 2003; 28(3/4):515-22.
  • 76. G arcía-Palomero E, Muńoz P, Usan P, Garcia P, Delgado E, De Austria C, Valenzuela R, Rubio L, Medina M, Martínez A. Potent β -amyloid modulators. Neurodegenerative Dis 2008; 5:153-6.
  • 77. C how VW, Savonenko AV, Melnikova T, Kim H, Price DL, Li T, Wong PC. Modeling an anti-amyloid combination therapy for Alzheimer’s disease. Sci Transl Med 2010; 2(13):13ra1.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5719e521-682c-4d06-bdbc-cc5887edafee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.