PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 69 | 3 |

Tytuł artykułu

Structural organisation of tunica intima in the aorta of the goat

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The structural organisation of tunica intima in the aorta is important for its integrity, prediction, and diagnosis of atherosclerosis. The goat is a suitable model for cardiovascular studies, but the structure of its tunica intima is scarcely reported. This study, therefore, aimed to describe features of the goat aortic tunica intima by light and transmission electron microscopy. Sixteen healthy male domestic goats (capra hircus) aged between 6 and 24 months were used: 8 for light and 8 for electron microscopy. The animals were euthanised with sodium pentabarbitone 20 mg/mL and fixed with 3% phosphate buffered glutaraldehyde. For light microscopy, specimens from various regions of the aorta were routinely processed for paraffin embedding and 7 μm sections stained with Mason’s trichrome. Those for transmission electron microscopy were post fixed in osmium tetroxide, embedded in Durcupan, and ultrathin sections stained with uranyl acetate and counter stained with lead citrate. Endothelium comprises round and squamous cells, linked to the subendothelial material by a simple and sometimes lamellated basement membrane. In the subendothelial zone, a heterogenous population of cells are connected with interlinked collagen and elastic fibres. Both cells and fibres are connected to the internal elastic lamina. The composite structure and interlinkages in the tunica intima permit unitary function and increase mechanical strength, thus enabling it to withstand haemodynamic stress. (Folia Morphol 2010; 69, 3: 164–169)

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

3

Opis fizyczny

p.164-169,fig.,ref.

Twórcy

autor
  • Department of Human Anatomy, University of Nairobi, P.O.Box 00100-30197, Kenya
autor
  • Department of Human Anatomy, University of Nairobi, Kenya
autor
  • Department of Human Anatomy, University of Nairobi, Kenya

Bibliografia

  • 1. Andreeva ER, Pugach IM, Gordon D, Orckhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell, 30: 127–135.
  • 2. Baryshnikova NA, Piatetskii AA, Gusev SA (1989) A quantitative analysis of regional features in the structure of aortal endothelial cells in short-term hypertension. Arkh Patol, 51: 37–42.
  • 3. Bezie Y, Lacolley P, Laurent S, Gabella G (1998) Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension, 32: 166-169.
  • 4. Davies EC (1994) Immunolocalization of microfibril and microfibril associated proteins in the subendothelial matrix of the developing mouse aorta. J Cell Sci, 107: 727–736.
  • 5. Dingemans KP, Teeling P, Lagendijk JH, Becker AE (2000) Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec, 258: 1–14.
  • 6. Dobrin PB (1999) Distribution of lamella deformations. Implications for properties of the arterial media. Hypertension, 33: 806–810.
  • 7. Dora KA (2001) Cell-cell communication in the vessel wall. Vasc Med, 6: 43–50.
  • 8. Farand P, Garon A, Plante GE (2007) Structure of large arteries: orientation of elastin in rabbit external elastic lamina and in elastic lamellae of aortic media. Microvasc Res, 73: 95–99.
  • 9. Garcia JL, Fernandez N, Garcia-Villalon AL, Gomez B, Dieguez G (1995) Cerebral reactive hyperaemia and arterial pressure in anaesthetized goats. Acta Physiol Scand, 153: 355–363.
  • 10. Glukhova MA, Koteliansky VE eds. (1995) Integrins, cytoskeletal and extracellular matrix in proteins in develo-ping smooth muscle cells of human aorta. In: Molecular and biological responses to the extracellular matrix. Academic Press, San Diego, pp. 37–79.
  • 11. Greenwald SE (2007) Ageing of the conduit arteries. J Path, 211: 157–172.
  • 12. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res, 91: 877–887.
  • 13. Jones GT, Jiang F, Mccormick SP, Dusting GJ (2005) Elastic lamina defects are an early feature of aortic lesions in the apolipoprotein knockout mice. J Vasc Res, 42: 237–246.
  • 14. Kimani JK (1981) Subendothelial fibrillar laminae in the carotid arteries of the giraffe (Giraffa camelopardalis). Cell Tiss Res, 219: 441–443.
  • 15. Kolpakov V, Polishchuk R, Bannykh S, Rekhter M, Solovjev P, Romanov Y, Tararak E, Antonov A, Mironov A (1996) Atherosclerosis-prone branch regions in human aorta: microarchitecture and cell composition of the intima. Atherosclerosis, 122: 173–189.
  • 16. Lemson MS, Daemen MJ, Kitshaar PJ, Tordoir JH (1999) A new animal model to study intimal hyperplasia in Av fistula. J Surg Res, 85: 51–58.
  • 17. Manrique M, Alborch E, Delgado JM (1977) Cerebral blood flow and behaviour during bran stimulation in the goat. Am J Physiol, 232: H495–H499.
  • 18. Nicosia RF, Villaschi S (1995) Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Investi, 73: 658–666.
  • 19. Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of PECAM-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol, 158: 773–785.
  • 20. Prasinos NN, Galatos AD, Raptopoulos D (2005) A comparison of propofol, thiopental or ketamine as induction agents in goats. Vet Anaesth Analg, 32: 289–296.
  • 21. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med, 340: 115–126.
  • 22. Sartore S, Chiavegato A, Franch R, Faggin E, Pauletto P (1997) Myosin gene expression and cell phenotypes in vascular smooth muscle during development, in experimental models, and in vascular disease. Arterioscler Thromb Vasc Biol, 17: 1210–1215.
  • 23. Shekhonin BV, Terarak EM (1995) Smooth muscle cell (smc) phenotype in diffuse intimal thickening and atherosclerotic plaques of human aorta. Atherosclerosis, 115: 60–61.
  • 24. Snowhill PB, Foran DJ, Silver FH (2004) A mechanical model or porcine vascular tissue. Part 1: determination of macromolecular component arrangement and volume fractions. Cardiovascular Engineering An Int J, 4: 281–293.
  • 25. Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on smooth muscle cells in the artery wall. Am J Physiol, 278: H1589–H1597.
  • 26. Xu C, Zarins CK, Glagov S (2001) Aneurysmal and occlusive atherosclerosis of the human abdominal aorta. J Vasc Surg, 33: 91–96.
  • 27. Zarins CK, Xu C, Taylor CA, Glagov S (2004) Localization of atherosclerotic lesions. Vasc Pathol Physiol, 5: 55–65.
  • 28. Zheng JW, Qui WL, Zhang ZY, Lin GC, Zhu HG (2000) Anatomical and Histologic study of the cervical vessels in goats Shangai Kou Qiang Yi Xu, 9: 39–41.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54ff7adc-0bb5-4d6a-a93b-50781ff1f7c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.