PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 3 |

Tytuł artykułu

Antistress and antidepressant properties of dapoxetine and vortioxetine

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The studies aimed to determine the antidepressant efficacy of single and chronic administration of dapoxetine alone and vortioxetine alone, as well as in the combination of these drugs. An additional objective of the study was to measure the effect of the active substances on the corticosterone level in chronically stressed animals. The study was conducted on male Wistar rats using non‑stressed and stressed groups (chronic restraint stress). The experiment comprised both forced swimming test (immobility time test) and corticosterone level measurement using Corticosterone ELISA Kit. The obtained results confirm the antidepressant efficacy of used drugs upon both single and chronic administration and potential efficacy of these drugs administered in combination with stressed rats. Corticosterone level analysis, meanwhile, showed stress relieving properties of the study drugs, which reduced the animal stress hormone level, whether administered separately or in combination. Dapoxetine and vortioxetine have an antidepressant and stress relieving effect on rats subject to chronic stress both in monotherapy and in combined therapy. Because both study drugs are new additions on the market, further research is necessary to prevent interactions related, for instance, with uncontrolled use of two drugs with similar mechanisms of action but prescribed in different indications (dapoxetine is commonly used to treat premature ejaculation).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

3

Opis fizyczny

p.217-224,fig.,ref.

Twórcy

autor
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
autor
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
autor
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
autor
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland

Bibliografia

  • Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36: 415–425.
  • Ayensu WK, Pucilowski O, Mason GA, Overstreet DH, Rezvani AH, Janowsky DS (1995) Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in Flinders lines of rats. Physiol Behav 57: 165–169.
  • Bambico FR, Nguyen N‑T, Gobbi G (2009) Decline in serotonergic firing activity and desensitization of 5‑HT1A autoreceptors after chronic unpredictable stress. Eur Neuropsychopharmacol 19: 215–228.
  • Bang‑Andersen B, Ruhland T, Jørgensen  M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A, Stensbøl TB (2011) Discovery of 1‑[2‑(2,4‑dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a  novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–3221.
  • Bétry C, Etiévant A, Pehrson A, Sánchez C, Haddjeri N (2015) Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Prog Neuropsychopharmacol Biol Psychiatry 58: 38–46.
  • Clément P, Laurin M, Compagnie S, Facchinetti P, Bernabé J, Alexandre L, Giuliano F (2012) Effect of dapoxetine on ejaculatory performance and related brain neuronal activity in rapid ejaculator rats. J Sex Med 9: 2562–2573.
  • D’Agostino A, English CD, Rey JA (2015) Vortioxetine (brintellix): a new sero‑ tonergic antidepressant. P T 40: 36–40.
  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213: 93–118.
  • Farhan M, Rafi H, Rafiq H (2016) Dapoxetine treatment leads to attenuation of chronic unpredictable stress induced behavioral deficits in rats model of depression. J Pharm Nutr Sci 5: 222–228.
  • Frank C (2008) Recognition and treatment of serotonin syndrome. Can Fam Physician 54: 988–992. Fuller RW (1996) Serotonin receptors involved in regulation of pituitary‑adrenocortical function in rats. Behav Brain Res 73: 215–219.
  • Garcia‑Garcia AL, Newman‑Tancredi A, Leonardo ED (2014) 5‑HT(1A) [corrected] receptors in mood and anxiety: recent insights into auto‑ receptor versus heteroreceptor function. Psychopharmacology 231: 623–636.
  • Hall CA, Reynolds‑Iii CF (2014) Late‑life depression in the primary care setting: challenges, collaborative care, and prevention. Maturitas 79: 147–152.
  • Hellstrom WJ (2009) Emerging treatments for premature ejaculation: focus on dapoxetine. Neuropsychiatr Dis Treat 5: 37–46.
  • Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) Regulation of the hypothalamic‑pitu‑ itary‑adrenocortical stress response. Compr Physiol 6: 603–621.
  • Hlavacova N, Li Y, Pehrson A, Sanchez C, Bermudez I, Csanova A, Jezova D, Franklin M (2018) Effects of vortioxetine on biomarkers associated with glutamatergic activity in an SSRI insensitive model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry 82: 332–338.
  • Jhanjee A, Kumar P, Bhatia MS, Srivastava S (2011) Dapoxetine – a novel drug for premature ejaculation. Delhi Psych J 14: 168–172.
  • Kendirci M, Salem E, Hellstrom WJ (2007) Dapoxetine, a novel selective serotonin transport inhibitor for the treatment of premature ejaculation. Ther Clin Risk Manag 3: 277–289.
  • Kitaichi Y, Inoue T, Nakagawa S, Boku S, Kakuta A, Izumi T, Koyama T (2010) Sertraline increases extracellular levels not only of serotonin, but also of dopamine in the nucleus accumbens and striatum of rats. Eur J Pharmacol 647: 90–96.
  • Kurhe Y, Mahesh R (2015) Ondansetron attenuates co‑morbid depression and anxiety associated with obesity by inhibiting the biochemical alterations and improving serotonergic neurotransmission. Pharmacol Biochem Behav 136: 107–116.
  • Nestler EJ, Barrot  M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34: 13–25.
  • Pae CU, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Serretti A (2015) Vortioxetine: a  meta‑analysis of 12 short‑term, randomized, placebo‑controlled clinical trials for the treatment of major depressive disorder. J Psychiatry Neurosci 40: 174–186.
  • Pehrson AL, Cremers T, Bétry C, Hart MGC van der, Jørgensen L, Madsen M, Haddjeri N, Ebert B, Sanchez C (2013) Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 23: 133–145.
  • Pepin MC, Beaulieu S, Barden N (1989) Antidepressants regulate gluco‑ corticoid receptor messenger RNA concentrations in primary neuronal cultures. Brain Res Mol Brain Res 6: 77–83.
  • Pineda E, Shin D, Sankar R, Mazarati AM (2010) Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51: 110–114.
  • Pitman DL, Ottenweller JE, Natelson BH (1988) Plasma corticosterone levels during repeated presentation of two intensities of restraint stress: chronic stress and habituation. Physiol Behav 43: 47–55.
  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47: 379–391.
  • Schüle C, Baghai T, Schmidbauer S, Bidlingmaier  M, Strasburger CJ, Laakmann G (2004) Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology 29: 185–200.
  • Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G (1998) Increase in serotonin‑1A autoreceptors in the midbrain of suicide victims with major depression‑postmortem evidence for decreased serotonin activity. J Neurosci 18: 7394–7401.
  • Vega‑Rivera NM, Fernández‑Guasti A, Ramírez‑Rodríguez G, Estrada‑Camarena E (2014) Forced swim and chronic variable stress reduced hippocampal cell survival in OVX female rats. Behav Brain Res 270: 248–255.
  • Wang Q, Timberlake MA, Prall K, Dwivedi Y (2017) The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 77: 99–109.
  • Wood GE, Young LT, Reagan LP, McEwen BS (2003) Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm Behav 43: 205–213.
  • Yang LM, Hu B, Xia YH, Zhang BL, Zhao H (2008) Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res 188: 84–90.
  • Yells DP, Hendricks SE, Prendergast MA (1992) Lesions of the nucleus paragigantocellularis: effects on mating behavior in male rats. Brain Res 596: 73–79.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54c11f48-b9f7-454d-a41e-69b8e183e023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.