Katedra Genetyki i Ogólnej Hodowli Zwierząt, Uniwersytet Przyrodniczy we Wrocławiu, Wrocław
Bibliografia
Ahmed K.A., Saxena V.K., Saxena M., Ara A., Pramod AB., Rajaram M.L., Dorman K.S., Majumdar S., Rasool T.J., 2007. Molecular cloning and sequencing of MHC class II beta 1 domain of turkey reveals high sequence identity with chicken. Int J Immunogenet., 34: 97-105.
Altschul, F.S., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nu¬cleic Acids Res., 25: 3389-3402.
Balakrishnan C.N., Ekblom R., Völker M., Westerdahl H., Godinez R., Kotkiewicz H., Burt D.W., Graves T., Griffin D.K., Warren W.C., Edwards S.V., 2010. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biology, 1: 8-29.
Brzezińska K., 2006. Analiza filogenetyczna genu 21-hydroksylazy steroidowej kilku gatunków zwierząt i człowieka. Praca doktorska. Wydział Biologii i Hodowli Uniwersytetu Przyrodni¬czego we Wrocławiu.
Burghelle-Mayeur C., Geffrotin C., Vaiman M., 1992. Sequences of the swine 21-hydroxylase gene (Cyp21) and a portion of the opposite-strand overlapping gene of unknown function previously described in human. Biochim. Biophys. Acta, 1171: 153-161.
Chamberlain N.L., Driver E.D., Mainsfeld R.L., 1994. The length and location of CAG trinucle¬otide repeats in the androgen receptor N-terminal domain affect trans activation function. Nu¬cleic Acids Res., 22: 3181-31886.
Chung B.C., Matteson K.J., Miller W.L., 1985. Cloning and characterization of the bovine gene for steroid 21-hydroxylase (P-450c21). DNA, 4: 211-219.
Higashi Y., Yoshioka H., Yamane M., Gotoh O., Fujii-Kuriyama Y., 1986. Complete nucleotide sequence of two steroid-hydroxylase genes tandemly arranged in human chromosome: a pseu-dogene and a genuine gene. Proc. Natl. Acad. Sci. USA, 83: 2841-2845.
Hosomichi K., Shiina T., Suzuki S., Tanaka M., Shimizu S., Iwamoto S., Hara H., Yoshida Y., Kulski J.K., Inoko H., Hanzawa K., 2006. The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics, 7: 322-326.
Hurt P., Walter L., Sudbrak R., Klages S., Müller I., Shiina T., Inoko H., Lehrach H., Günther E., Reinhardt R., Himmelbauer H., 2003. The genomic sequence and comparative analysis of the rat major histocompatibility complex, 14: 631-639.
International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analy¬sis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 799-807.
Kawaguchi H., Golubic M., Figueroa F., Klein J., 1990. Organization of the chimpanzee C4-CYP21 region: implications for the evolution of human genes. Eur. J. Immunol., 20: 739-745.
Kawaguchi H., Klein J., 1992. Organization of C4 and Cyp21 loci in gorilla and orangutan. Hum. Immunol., 33: 153-162.
Kosowska B., Brzezińska K., Dobosz T., Moska M., Strzała T., Marszałek B., Schmidt K., 2005. Canis lupus steroid 21-hydroxylase gene, complete cds. GenBank: bankit 763435 DQ336566.
Krone N., Braun A., Roscher A.A., Knorr D., Schwarz H.P., 2000. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab., 85: 1059-1065.
Kwok S., Chang S., Sninsky J., Wang A., 1994. A guide to the design and use of mismatched and degenerate primers. PCR Methods and Applications, 3: 39-47.
Law S.K., Dodds A.W., Porter R.R., 1984. A comparison of the properties of two classes, C4A and C4B, of the human complement component C4. EMBO J., 3: 1819-1823.
Lee H.H., 2004. The chimeric CYP21P/CYP21 gene and 21-hydroxylase deficiency. J. Hum. Genet., 49: 65-72.
Li Y.Y., Inoue K., Takei Y., 2003. Interrenal steroid 21-hydroxylase in eels: primary structure, progesterone-specific activity and enhanced expression by ACTH. J. Mol. Endocrinol., 31: 327-340.
Livezey B.C., Zusi R.L., 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neor- nithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc., 149: 1-95.
Loidi L., Quinteiro C., Parajes S., Barreiro J., Lestón D.G., Cabezas-Agrícola J.M., Sueiro A.M., Araujo-Vilar D., Catro-Feijóo L., Costas J., Pombo M., Domínguez F., 2006. High variability in CYP21A2 mutated alleles in Spanish 21-hydroxylase deficiency patients, six novel mutations and a founder effect. Clin. Endocrinol., 64: 6-33.
New M.I., 2004. An update of congenital adrenal hyperplasia. Ann. N. Y. Acad. Sci., 1038: 14-43.
Qin J., Mamotte C., Cockett N.E., Wetherall J.D., Groth DM., 2008. A map of the class III region of the sheep major histocompatibilty complex, 9: 409-413.
Riepe F.G., Tatzel S., Sippel W.G., Pleiss J., Krone N., 2005. Congenital adrenal hyperplasia: the molecular basis of 21-hydroxylase deficiency in H-2™18 mice. Endocrinology, 146: 2563¬2574.
Shiina T., Briles W.E., Goto R.M., Hosomichi K., Yanagiya K., Shimizu S., Inoko H., Miller M.M., 2007. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion ofthe chicken MHC-B affecting infectious disease. J. Immunol., 178: 7162¬7172.
Siddle H.V., Deakin J.E., Coggill P., Hart E., Cheng Y.Y., Wong E.S.W., Harrow J., Beck S., Be- lov K., 2009. MHC-linked and un-linked class I genes in the wallaby. BMC Genomics, 10: 310-316.
Speiser P. W., Dupont B., Rubinstein P., Piazza A., Kastelan A., New M.I., 1985. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet., 37: 650-667.
Takada K., Kitamura H., Takiguchi M., Saito M., Hashimoto A., 2002. Cloning of canine 21-hy- droxylase gene and its polymorphic analysis as a candidate gene for congenital adrenal hyper- plasia-like syndrome in Pomeranians. Res. Vet. Sci., 73: 159-163.
Tekle Y.I., Grant J.R., Kovner A.M., Townsend J.P., Katz L.A., 2010. Identification of new mo¬lecular markers for assembling the eukaryotic tree of life. Mol. Phylogenet. Evol., 55: 82-177.
Warren W.C., Clayton D.F., Ellegren H., Arnold A.P., Hillier L.W., Künstner A., Searle S., White S., VilellaA.J., Fairley S., HegerA., Kong L.,Ponting C.P., Jarvis E.D., Mello C.V., Minx P., Lovell P., Velho T.A., Ferris M., Balakrishnan C.N., Sinha S., Blatti C., London S.E., Li Y., Lin Y.C., George J., Sweedler J., Southey B., Gunaratne P., Watson M., Nam K., Backström N., Smeds L., Nabholz B., Itoh Y., Whitney O., Pfenning A.R., Howard J., Völker M., Skinner B.M., Grif¬fin D.K., Ye L., McLaren W.M., Flicek P., Quesada V., Velasco G., Lopez-Otin C., Puente X.S., Olender T., Lancet D., Smit A.F., Hubley R., Konkel M.K., Walker J.A., Batzer M.A,. Gu W., Pollock D.D., Chen L., Cheng Z., Eichler E.E., Stapley J., Slate J., Ekblom R., Birkhead T., Burke T., Burt D,. Scharff C., Adam I., Richard H., Sultan M., Soldatov A., Lehrach H., Edwards S.V., Yang S.P., Li X., Graves T., Fulton L., Nelson J., Chinwalla A., Hou S., Mardis E.R., Wilson R.K., 2010. The genome of a songbird. Nature, 464: 62-757.
White P.C., New M.I., Dupont B.O., 1986. Structure of human steroid 21-hydroxylase genes. Proc. Natl. Acad. Sci. USA, 83: 5111-5115.