PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 05 |

Tytuł artykułu

Selekcja genomowa w hodowli drzew leśnych - podstawowe założenia, problemy i perspektywy

Treść / Zawartość

Warianty tytułu

EN
Genomic selection in forest tree breeding - basic principles, problems and future prospects

Języki publikacji

PL

Abstrakty

EN
All tree breeders cope with the same challenge of the very long time interval of a single breeding cycle. What is more, trees are long−lived, with desirable breeding traits expressing late during their life cycle. Increasing problems with climate change, globalization or economic growth have forced us to accelerate tree breeding and improve selection precision, both of which can be achieved by genomic selection (GS). The idea of GS was introduced nearly 20 years ago as an extension of marker−assisted selection (MAS) in order to advance breeding technologies using genetic markers. Unlike MAS, which exploits only a set of marker−trait associations, GS relies on a high number of genetic markers that are spread throughout the entire length of the genome. All markers effects are assessed simultaneously in order to build a precise model that allows prediction of genetic estimated breeding value of a particular individual using genetic data only. GS has already revolutionized dairy cattle breeding resulting in remarkable improvements across multiple traits and is becoming more and more common in crop production. We now know that genetic architecture of quantitative traits is complex, but recent advances in genomics have made it possible to deal with this problem in an unprecedented way. There are certain concerns regarding GS in forest tree species that include genotype−environment (G×E) interaction and the usefulness of the predictive model built up by GS in the next generation of trees. Nevertheless, experimental results obtained so far have shown that the genetic gain per unit time as well as selection precision can be substantially increased. Here we present the basic principles of GS for forest tree species, giving examples of studies carried out so far and discussing problems and future possibilities that GS may soon open up for forest tree breeders.

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

05

Opis fizyczny

s.384-391,rys.,bibliogr.

Twórcy

  • Instytut Dendrologii Polskiej Akademii Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Instytut Dendrologii Polskiej Akademii Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Instytut Dendrologii Polskiej Akademii Nauk, ul.Parkowa 5, 62-035 Kórnik

Bibliografia

  • Baettig R., Cornejo J., Guajardo J. 2017. Evaluation of intra-ring wood density profiles using NIRS: comparison with the X-ray method. Annals of Forest Science 74: 13.
  • Beaulieu J., Doerksen T., Clement S., Mackay J., Bousquet J. 2014a. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113 (4): 343-352.
  • Beaulieu J., Doerksen T. K., MacKay J., Rainville A., Bousquet J. 2014b. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics 15 (1): 1048.
  • Brondani R. P., Williams E. R., Brondani C., Grattapaglia D. 2006. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biology 6: 20.
  • Calleja-Rodriguez A., Pan J., Funda T., Chen Z., Baison J., Isik F., Abrahamsson S., Wu H. X. 2019. Genomic prediction accuracies and abilities for growth and wood quality traits of Scots pine, using genotyping-by-sequencing (GBS) data. DOI: https://doi.org/10.1101/607648.
  • Dyderski M. K., Paź S., Frelich L. E., Jagodziński A. M. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology 24 (3): 1150-1163.
  • Echt C. S., Saha S., Krutovsky K. V., Wimalanathan K., Erpelding J. E., Liang C., Nelson C. D. 2011. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12: 17.
  • El-Dien O. G., Ratcliffe B., Klapste J., Chen C., Porth I., El-Kassaby Y. A. 2015. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16: 370.
  • Goddard M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136 (2): 245-257.
  • Goddard M. E., Hayes B. J. 2007. Genomic selection. Journal of Animal Breeding and Genetics 124 (6): 323-330.
  • Grattapaglia D. 2014. Breeding forest trees by genomic selection: current progress and the way forward. W: Tuberosa R., Graner A., Frison E. [red.]. Advances in genomics of plant genetic resources. Springer, New York. 652-682.
  • Grattapaglia D. 2017. Status and perspectives of genomic selection in forest tree breeding. W: Varshney R. K., Roorkiwal M., Sorrells M. E. [red.]. Genomic Selection for Crop Improvement: New Molecular Breeding Strategies for Crop Improvement. Springer International Publishing, Cham. 199-249.
  • Grattapaglia D., Resende M. D. V. 2011. Genomic selection in forest tree breeding. Tree Genetics & Genomes 7 (2): 241-255.
  • Grattapaglia D., Silva-Junior O. B., Resende R. T., Cappa E. P., Müller B. S. F., Tan B., Isik F., Ratcliffe B., El-Kassaby Y. A. 2018. Quantitative genetics and genomics converge to accelerate forest tree breeding. Frontiers in Plant Science 9: 1693.
  • Heslot N., Jannink J. L., Sorrells M. E. 2015. Perspectives for genomic selection applications and research in plants. Crop Science 55 (1): 1-12.
  • Isik F. 2014. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests 45 (3): 379-401.
  • Jastrzębowski S., Kalisz M. 2015. Leśnictwo plantacyjne. Jeszcze wybór czy już konieczność? Las Polski 7: 16-19.
  • Matras J., Jastrzębowski S., Kalisz M., Mionskowski M., Przybylski P. 2014. Testowanie potomstwa drzew leśnych. Notatnik Naukowy Instytutu Badawczego Leśnictwa 3 (98).
  • Namkoong G., Kang H. C., Brouard J. S. 1988. Tree breeding: principles and strategies. Springer Verlag, New York.
  • Resende M. D. V., Resende M. F. R., Sansaloni C. P., Petroli C. D., Missiaggia A. A., Aguiar A. M., Abad J. M., Takahashi E. K., Rosado A. M., Faria D. A., Pappas G. J., Kilian A., Grattapaglia D. 2012a. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist 194 (1): 116-128.
  • Resende M. F. R., Munoz P., Acosta J. J., Peter G. F., Davis J. M., Grattapaglia D., Resende M. D. V., Kirst M. 2012b. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist 193 (3): 617-624.
  • White T. L., Adams W. T., Neale D. B. 2007. Forest genetics. CABI publishing, Cambridge, MA. 682.
  • Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97-159.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-53657500-526b-422c-8261-95a26388e0af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.