PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 4 |

Tytuł artykułu

Produkcja kwasu mlekowego przez grzyby z rodzaju Rhizopus

Treść / Zawartość

Warianty tytułu

EN
Lactic acid production by fungi of Rhizopus genus

Języki publikacji

PL

Abstrakty

PL
Kwas mlekowy jest beztlenowym produktem glikolizy prowadzonej przez homo- i heterofermentatywne bakterie fermentacji mlekowej. Próby wykorzystania pleśni z rodzaju Rhizopus do produkcji kwasu mlekowego wykazały nieopłacalność procesu. Pleśnie z rodzaju Rhizopus mają o wiele mniejsze wymagania pokarmowe niż bakterie fermentacji mlekowej. Ponadto wykorzystują jako źródło węgla tanie polimery, takie jak: skrobia, hemicelulozy i celuloza, a produktem fermentacji jest pożądany kwas L(+) mlekowy. W pracy przedstawiono biochemizm wytwarzania kwasów organicznych, w tym mlekowego, z glukozy i ksylozy przy udziale szczepów Rhizopus oryzae z uwzględnieniem czynników warunkujących efektywność tego procesu. Z literatury wynika, że szczepy z rodzaju Rhizopus w optymalnych warunkach hodowli, takich jak: rodzaj i stężenie substratu, odpowiednia temperatura a także pH i natlenienie podłoża hodowlanego wyraźnie zwiększają produkcję kwasu mlekowego. Forma morfologiczna i unieruchomienie grzybni Rhizopus znacznie podnoszą produktywność i wydajność kwasu mlekowego.
EN
Lactic acid is a product of anaerobic glycolysis performed by homo- and heterofermentative lactic acid bacteria. Attempts to use moulds of the Rhizopus genus in the production of lactic acid proved that this process was not cost-effective. The moulds of the Rhizopus genus have much lower nutritional requirements than lactic acid bacteria. Additionally, they use inexpensive polymers as a carbon source, such as: starch, hemicellulose, and cellulose; and the fermentation product is a desirable L(+) lactic acid. The paper presents a biochemical profile of the production of organic acids, including lactic acid, from glucose and xylose with the participation of Rhizopus oryzae strains, and the factors to determine the efficiency of the process are incorporated therein. The reference literature confirms that strains of the Rhizopus genus increase, in large measure, the production of lactic acid under optimal culture conditions, such as type and concentration of the substrate, appropriate temperature, as well as pH and oxygenation of the culture medium. The morphological form and immobilization of Rhizopus mycelium significantly add to the productivity and yield of lactic acid.

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

s.21-36,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra Biotechnologii, Żywienia Człowieka i Towaroznawstwa Żywności, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul.Skromna 8, 20-704 Lublin
autor
  • Katedra Biotechnologii, Żywienia Człowieka i Towaroznawstwa Żywności, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul.Skromna 8, 20-704 Lublin

Bibliografia

  • [1] Bai D.M., Jia M.Z, Zhao X.M., Ban R., Shen F., Li XG, Xu S.M.: L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem. Eng. Sci., 2003, 58, 785-791.
  • [2] Bai D.M., Li S-Z., Liu Z.L., Cui Z-F.: Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl. Biochem. Biotechnol., 2008, 144, 79-85.
  • [3] Carlile M.J., Watkinson S.C., Gooday G.W.: Fungal Cells and Vegetative Growth. W: The Fungi. Academic Press, London 2001, pp. 85-184.
  • [4] Chotisubha-Anandha N., Thitiprasert S., Tolieng V., Thongchu N.: Improved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactor. Bioprocess Biosyst. Eng., 2010, 1-10 (article in press).
  • [5] Datta R., Henry M.: Lactic acid: recent advances in products, processes and technologies. J. Chem. Technol. Biotechnol., 2006, 81, 1119-1129.
  • [6] Dong X.Y., Bai S., Sun Y.: Production of L-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnol. Lett.,1996, 18, 225-228.
  • [7] Du J., Cao N., Gong C.S., Tsao G.T.: Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter. Appl. Biochem. Biotechnol. – Part A Enz. Eng. Biotechnol., 1998, 70-72, 323- 329.
  • [8] Ganguly R., Dwivedi P., Singh R.P.: Production of lactic acid with loofa sponge immobilized Rhizopus oryzae RBU2-10. Bioresour. Technol., 2007, 98, 1246-1251.
  • [9] Hamamci H., Ryu D.D.Y.: Production of L(+)-lactic acid using immobilized Rhizopus oryzae reactor performance based on kinetic model and simulation. Appl. Biochem. Biotechnol., 1994, 44 (2), 125-133.
  • [10] Hang Y.D., Hamamci H., Woodams E.E.: Production of L (+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol. Lett., 1989, 11, 119-120.
  • [11] Hofvendahl K., Hahn-Hägerdal B.: Factors affecting the fermentative lactic acid production from renewable resources. Enz. Microbial. Technol., 2000, 26 (2-4), 87-107.
  • [12] Huang L.P., Jin B., Lant P., Zhou J.: Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J. Chem. Technol. Biotechnol., 2003, 78, 899-906.
  • [13] Huang L.P., Dong T., Chen J.W., Li N.: Biotechnological production of lactic acid integrated with fishmeal wasterwater treatment by Rhizopus oryzae. Bioprocess Biosyst. Eng., 2007, 30, 135-140.
  • [14] Jin B., Yin P., Zhao L.: Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. J. Ind. Microbiol. Biotechnol., 2005, 32, 678-686.
  • [15] Kitpreechavanich V., Maneeboon T., Kayano Y., Sakai K.: Comparative characterization of L-lactic acid-producing thermotolerant Rhizopus fungi. J. Biosci. Bioeng., 2008, 106, 541-548.
  • [16] Kompendium dodatków do żywności. Red.: A. Rutkowski, S. Gwiazda, K. Dąbrowski. Wyd. Hortimex, Konin 2003.
  • [17] Kubicek C.P.: Kwasy organiczne. W: Podstawy biotechnologii. Red. C. Ratledge, B. Kristiansen. Wyd. Nauk. PWN, Warszawa 2011, ss. 248-264.
  • [18] Li X.M., Lin J.P., Liu M.: Repeated-batch and continuous production of L-lactic acid by Rhizopus oryzae immobilized in calcium alginate beads: reactor performance and kinetic model. Chin. J. Chem. Eng.,1998, 6, 330-339.
  • [19] Liu Y., Liao W., Chen S.: Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J. Appl. Microbiol., 2008, 105 (5), 1521-1528.
  • [20] Lockwood L.B. , Ward G.E., May O.E.: The physiology of Rhizopus oryzae. J. Agric. Res., 1936, 53, 849-857.
  • [21] Longacre A., Reimers J.M., Gannon J.E., Wright B.E.: Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genet. Biol., 1996, 21, 30-39.
  • [22] Maas R.H.W., Springer J., Eggink G., Weusthuis R.A.: Xylose metabolism in the fungus Rhizopus oryzae: Effect of growth and respiration on L(+)-lactic acid production. J. Ind. Microbiol. Biotechnol., 2008, 35 (6), 569-578.
  • [23] Marták J., Schlosser Š., Sabolová E., Kriŝtofĭková L., Rosenberg M.: Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochem., 2003, 38, 1573-1583.
  • [24] Miura S., Arimura T., Hoshino M., Kojima M., Dwiarti L., Okabe M.: Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J. Biosci. Bioeng., 2003, 96 (1), 65-69.
  • [25] Park E.Y., Kosakai Y., Okabe M.: Efficient production of L(+)-lactic acid using mycelial cotton-like floes of Rhizopus oryzae in an air-lift bioreactor. Biotechnol. Prog., 1998, 14, 699-704.
  • [26] Piotrowska M., Żakowska Z.: Grzyby strzępkowe. W: Mikrobiologia techniczna. Red. Z. Libudzisz., K. Kowal, Z. Żakowska. Wyd. Nauk. PWN, Warszawa 2007, ss. 60-83.
  • [27] Soccol C.R., Marin B., Raimbault M., Lebeault J-M.: Potential of solid state fermentation for production of L(+)-lactic acid by Rhizopus oryzae Appl. Microbiol. Biotechnol., 1994, 41 (3), 286-290.
  • [28] Soccol C.R., Marin B., Raimbault M., Lebeault J-M.: Breeding and growth of Rhizopus in raw cassava by solid state fermentation. Appl. Microbiol. Biotechnol., 1994, 41, 330-336.
  • [29] Soccol C.R., Stonoga V.J., Raimbault M.: Production of L-lactic acid by Rhizopus species. World J. Microbiol. Biotechnol., 1994, 10 (4), 433-435.
  • [30] Tay A., Yang S.T.: Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng., 2002, 80, 1-12.
  • [31] Thitiprasert S., Sooksai S., Thongchul N.: In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Appl. Biochem. Biotechnol., 2011, 164, 1305-1322.
  • [32] Thongchul N., Navankasattusas S., Yang S-T.: Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst. Eng., 2010, 33 (3), 407-416.
  • [33] Tsao G.T., Cao N.J., Du J., Gong C.S.: Production of multifunctional organic acids from renewable resources. Advances in Biochem. Eng./ Biotechnol., 1999, 65, 243-280.
  • [34] Vijayakumar J., Aravindan R., Viruthagiri T.: Recent trends in the production, purification and application of lactic acid. Chem. Biochem. Eng. Quarterly, 2008, 22 (2), 245-264.
  • [35] Wang Z., Wang Y., Yang S.-T., Wang R., Ren H.: A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bior. Technol., 2010, 101 (14), 5557-5564.
  • [36] Ward G.E., Lockwood L.B, May O.E., Herrick H.T.: Biochemical studies in the genus Rhizopus. I. The production of dextro-lactic acid. J. Am. Chem. Soc., 1936, 58 (7), 1286-1288.
  • [37] Woiciechowski A.L., Soccol C.R, Ramos L.P., Pandey A.: Experimental design to enhance the production of L(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem., 1999, 34, 949-955.
  • [38] Wu X., Jiang S., Liu M., Pan L., Zheng Z., Luo S.: Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J. Ind. Microbiol. Biotechnol., 2010, 38 (4), 565-571.
  • [39] Yang C.W., Lu Z., Tsao G.T.: Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Appl. Biochem. Biotechnol., 1995, 51-52 (1), 57-71.
  • [40] Yin P.M., Nishina N., Kosakai Y., Yahiro K., Park Y., Okabe M.: Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J. Ferment. Bioeng., 1997, 84 (3), 249-253.
  • [41] Yin P., Yahiro K., Ishigaki T., Park Y., Okabe M.: L(+)-Lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor. J. Ferment. Bioeng., 1998, 85, 96-100.
  • [42] Yu M.C., Wang R.C., Wang C.Y., Duan K.J., Sheu D.C.: Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae. J. Chin. Inst. Chem. Eng., 2007, 38 (3-4), 223-228.
  • [43] Zhang D.F., Lin J.P., Jin Z.H.: Rotating disc contactor used for L-lactic acid production by immobilized Rhizopus oryzae and its scale-up. Chem. Eng. (China), 2004, 32 (1), 34-37.
  • [44] Zhang, Z.Y., Jin B., Kelly J.M.: Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J., 2007, 35 (3), 251-263.
  • [45] Zhang Z.Y., Jin B., Kelly J.M.: Production of lactic acid and by-products from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World J. Microbiol. Biotechnol., 2007, 23, 229-236.
  • [46] Zhang Z.Y., Jin B., Kelly J.M.: Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor. Appl. Biochem. Biotechnol., 2008, 149 (3), 265-276.
  • [47] Zhang Z.Y., Jin B., Kelly J.M.: Enhancement of L(+)-lactic acid production using acid-adapted precultures of Rhizopus arrhizus in a bubble column reactor. J. Biosci. Bioeng., 2009, 108 (4), 344-347.
  • [48] Zhou Y., Domínguez J.M., Cao N., Du J., Tsao G.T.: Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl. Biochem. Biotechnol., 1999, 77-79, 401-407.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-53210eb3-4184-41ff-8a3a-30bd85d167e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.