PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

The influence of temperature on function of mammalian skeletal muscles

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of the thermal environment on physiological processes and body temperature have been widely studied. Skeletal muscles are one of the tissues that are very sensitive to different thermal conditions. The temperature of muscle, especially in limbs, is frequently different than core temperature and fluctuates daily. For example, the resting muscle temperature of humans (core temperature 37°C) may vary from 29.4 to 34°C but may be increased to 40°C in the same muscle during activity [3]. The change in temperature between resting and working muscle has the potential to considerably alter the rate of contractile muscle properties and power outcomes. This review presents the current state of knowledge regarding the effect of temperature on properties of mammalian skeletal muscle contractions, specifically the biomechanical, metabolic, and neuromuscular aspects.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.19-24,ref.

Twórcy

autor
  • Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznan, Poland

Bibliografia

  • 1. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967; 50: 197-218.
  • 2. Bárány M, Bárány K, Reckard T, Volpe A. Myosin of fast and slow muscles of the rabbit. Arch Biochem Biophys. 1965; 109: 185-191.
  • 3. Bennett AF. Thermal dependence of muscle function. Am J Physiol – Regul Integr Comp Physiol. 1984; 16: 217-229.
  • 4. Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV, Woods JJ. Muscle temperature, contractile speed, and motoneuron firing rates during human voluntary contractions. J Appl Physiol. 1992; 73: 2457-2461.
  • 5. Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am J Physiol Content. 1971; 220: 1053-1059.
  • 6. Clarke RSJ, Hellon RF, Lind AR. The duration of sustained contractions of the human forearm at different muscle temperatures. 1958; 143: 454-473.
  • 7. Close R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol. 1964; 173: 74-95.
  • 8. Close R, Hoh JFY. Influence of temperature on isometric contractions of rat skeletal muscles. Nature. 1968; 217: 1179-1180.
  • 9. Edwards RHT, Harris RC, Hultman E, Kaijser L, Koh D, Nordesjö L-O. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol. 1972; 220: 335-352.
  • 10. Elmubarak MH, Ranatunga KW. Temperature sensitivity of tension development in a fast-twitch muscle of the rat. Muscle Nerve. 1984; 7: 298-303.
  • 11. Funatsu T, Higuchi H, Ishiwata S. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol. 1990; 110: 53-62.
  • 12. Hill DK. Resting tension and the form of the twitch of rat skeletal muscle at low temperature. J Physiol. 1972; 221: 161-171.
  • 13. Horrowits R, Podolsky RJ. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987; 105: 2217-2223.
  • 14. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957; 7: 255-318.
  • 15. Kordaš M, Gabrovec I, Popovič B. An attempt at an analysis of the factors determining the time course of the end-plate current: I. The effects of prostigmine and of the ratio of Mg2+ to Ca2+. J Physiol. 1972; 224: 317-332.
  • 16. Magid A, Law DJ. Myofibrils bear most of the resting tension in frog skeletal muscle. Science. 1985; 230: 1280-1282.
  • 17. Mallette MM, Green LA, Gabriel DA, Cheung SS. The effects of local forearm muscle cooling on motor unit properties. Eur J Appl Physiol. 2018; 118: 401-410.
  • 18. Maruyama K, Kimura S, Ohashi K. Connectin, an elastic protein of muscle. J Biochem. 1977; 82: 317-337.
  • 19. Maruyama K, Matsuno A, Higuchi H, Shimaoka S, Kimura S, Shimizu T. Behaviour of connectin (titin) and nebulin in skinned muscle fibres released after extreme stretch as revealed by immunoelectron microscopy. J Muscle Res Cell Motil. 1989; 10: 350-359.
  • 20. Pate E, Bhimani M, Franks-Skiba K, Cooke R. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol. 1995; 486: 689-694.
  • 21. Place N, Yamada T, Zhang SJ, Westerblad H, Bruton JD. High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol. 2009; 587: 4717-4724.
  • 22. Ranatunga KW. Influence of temperature on isometric tension development in mouse fast- and slow-twitch skeletal muscles. Exp Neurol. 1980; 70: 211-218.
  • 23. Ranatunga KW. Temperature-dependence of shortening velocity skeletal muscle. J Physiol. 1982; 329: 465-483.
  • 24. Ranatunga KW. Temperature effects on force and actinmyosin interaction in muscle: a look back on some experimental findings. Int J Mol Sci. 2018; 19: 1538.
  • 25. Ranatunga KW. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures. Biophys J. 1994; 66: 1531-1541.
  • 26. Ranatunga KW, Wylie SR. Temperature-dependent transitions in isometric contractions of rat muscle. J Physiol. 1983; 339: 87-95.
  • 27. Roos A, Boron WF. Intracellular pH. Physiol Rev. 1981; 61: 296-434.
  • 28. Roots H, Ball G, Talbot-Ponsonby J, King M, McBeath K, Ranatunga KW. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. J Appl Physiol. 2009; 106: 378-384.
  • 29. Segal SS, Faulkner JA. Temperature-dependent physiological stability of rat skeletal muscle in vitro. Am J Physiol Physiol. 1985; 248: 265-270.
  • 30. Segal SS, Faulkner JA, White TP. Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol. 1986; 61: 660-665.
  • 31. Stephenson DG, Williams DA. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol. 1981; 317: 281-302.
  • 32. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle: review and hypothesis. Cell Muscle Motil. 1985; 6: 315-369.
  • 33. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J. 1993; 64: 1161-1177.
  • 34. Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. 1997; 500: 193-204.
  • 35. Zoladz JA, Koziel A, Broniarek I, Woyda-Ploszczyca AM, Ogrodna K, Majerczak J, et al. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats. PLoS One. 2017; 12: 1-13.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-51d30d2b-59d2-4216-ab75-6fb08434d5ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.