PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 77 |

Tytuł artykułu

Morphological and anatomical differentiation in peripheral Pinus sylvestris L. populations from the Carpathian region

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Carpathian Scots pine populations having peripheral distribution within the species’ range are often sustained in specific types of habitats, such as peat bogs and rocky surfaces or lime consisting sandy substrates. Due to their long time adaptive processes, which involve genotypes that can be preadapted to a given selection pressure, historically isolated populations are subjects of particular interest in studies of in situ adaptation. In this study we focus on detecting the level of phenotypic differentiation based on cone morphology and needle anatomy in marginal populations of Pinus sylvestris L. in the Pannonian Basin and the Carpathian Mountains. Six cone morphological and eight needle anatomical characters were measured and four cone morphological and four needle anatomical ratios were calculated. Our results in concordance with paleobotanical data indicate a common origin of the populations from the Northern Carpathians and the Pannonian Basin. High levels of variation were observed in cone morphology. Discriminant function analysis based on the eight cone characteristics revealed clearly discernible groups of populations and indicated significant differentiation among populations growing in peat bogs and on rocky substrates. Significant differences among populations from different habitats were also revealed by comparing needle anatomical variables. The phenotypic differentiation by habitat type based on the measured characters might be evaluated as a sign of local adaptation with detectable phenotypic patterns.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Opis fizyczny

p.105–117,fig.,ref.

Twórcy

Bibliografia

  • Alía R, Moro-Serrano J & Notivol E (2001) Genetic variability of Scots pine (Pinus sylvestris) provenances in Spain: growth traits and survival. Silva Fennica 35: 27–38.
  • Androsiuk P, Kaczmarek Z & Urbaniak L (2011) The morphological traits of needles as markers of geographical differentiation in European Pinus sylvestris populations. Dendrobiology 65: 3–16.
  • Bączkiewicz A, Buczkowska K & Wachowiak W (2005) Anatomical and morphological variability of needles of Pinus mugo Turra on different substrata in the Tatra Mountains. Biological Letters 42: 21–32.
  • Beaulieu J & Simon J-P (1995) Variation in cone morphology and seed characters in Pinus strobus in Quebec. Canadian Journal of Botany 73: 262–271.
  • Bell G (2010) Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365: 87–97.
  • Bennett K & Provan J (2008) What do we mean by ‘refugia’? Quaternary Science Reviews 27–28: 2449–2455.
  • Bernhardsson C, Floran V, Ganea S & García-Gil M (2016) Present genetic structure is congruent with the common origin of distant Scots pine populations in its Romanian distribution. Forest Ecology and Management 361: 131–143.
  • Bilgen B & Kaya N (2007) Allozyme variations in six natural populations of Scots pine (Pinus sylvestris) in Turkey. Biologia 62: 697–703.
  • Bobowicz M (1984) Variability of needles in Polish populations in Scotch pine (Pinus sylvestris). Bulletin de la Société des Amis des Sciences et des Lettres de Poznań, D 24: 97–104.
  • Bobowicz M & Korczyk A (2000) The variability of the oldest trees of Scots pine (Pinus sylvestris L.) from the Bialowieza Primeval Forest. II. Variability of needle morphology traits in old-growth Scots pine trees from the Bialowieza Primeval Forest as compared to the variability in eight Polish populations. Biological Bulletin of Poznań 37: 5–15.
  • Bone E & Farres A (2001) Trends and rates of microevolution in plants: Microevolution rate, pattern, process. Springer, pp. 165–182.
  • Boratynska K & Hinca M (2003) Morphological characteristic of Pinus sylvestris L. in the southernmost, isolated locality in the Sierra de Baza (S Spain) as expressed in the needle characters. Dendrobiology 50: 3–9.
  • Boratyński A (1991) Range of natural distribution: Genetics of Scots pine (ed. by M Giertych & C Mátyás) Akadémiai Kiadó, Budapest, pp. 19–30.
  • Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent JM, De Beaulieu JL, Sadori L & Jost A (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography 15: 271–282.
  • Critchfield WB & Little EL (1966) Geographic distribution of the pines of the world. US Department of Agriculture, Forest Service, pp. 11–32.
  • Damblon F (1997) Palaeobotanical study of representative upper palaeolithic sites in the central European plain: a contribution to the SC-004 Project. Préhistoire européenne 11: 245–254.
  • Dangasuk OG & Panetsos KP (2004) Altitudinal and longitudinal variations in Pinus brutia (Ten.) of Crete Island, Greece: some needle, cone and seed traits under natural habitats. New Forests 27: 269–284.
  • Davis MB & Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292: 673–679.
  • Donnelly K, Cavers S, Cottrell JE & Ennos RA (2016) Genetic variation for needle traits in Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes 12: 40.
  • Dzialuk A, Muchewicz E, Boratyński A, Montserrat JM, Boratyńska K & Burczyk J (2009) Genetic variation of Pinus uncinata (Pinaceae) in the Pyrenees determined with cpSSR markers. Plant Systematics and Evolution 277: 197–205.
  • Eguiluz Piedra T (1984) Geographic variation in needles, cones and seeds of Pinus tecunumanii in Guatemala. Silvae Genetica 33: 72–79.
  • Farrell BD, Dussourd DE & Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? American Naturalist: 881–900.
  • Forde MB (1964) Variation in natural populations of Pinus radiata in California: Part 3. Cone characters. New Zealand Journal of Botany 2: 459–485.
  • Friend AD & Woodward FI (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research 20: 59–124.
  • Gil L, Climent J, Nanos N, Mutke S, Ortiz I & Schiller G (2002) Cone morphology variation in Pinus canariensis Sm. Plant Systematics and Evolution 235: 35–51.
  • González-Martínez SC, Krutovsky KV & Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytologist 170: 227–238.
  • Gregorius H-R (1989) The importance of genetic multiplicity for tolerance of atmospheric pollution: Genetic effects of air pollutants in forest tree populations. Springer Berlin Heidelberg, pp. 163–172.
  • Haesaerts P, Damblon F, Bachner M & Trnka G (1996) Revised stratigraphy and chronology of the Willendorf II sequence, Lower Austria. Archaeologia Austriaca 80: 25–42.
  • Huang X, Yin C, Duan B & Li C (2008) Interactions between drought and shade on growth and physiological traits in two Populus cathayana populations. Canadian Journal of Forest Research 38: 1877–1887.
  • Jankovská V & Pokorný P (2008) Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324.
  • Jasińska AK, Boratyńska K, Dering M, Sobierajska KI, Ok T, Romo A & Boratyński A (2014) Distance between south-European and south-west Asiatic refugial areas involved morphological differentiation: Pinus sylvestris case study. Plant Systematics and Evolution 300: 1487–1502.
  • Jasińska AK, Wachowiak W, Muchewicz E, Boratyńska K, Montserrat JM & Boratyński A (2010) Cryptic hybrids between Pinus uncinata and P. sylvestris. Botanical Journal of the Linnean Society 163: 473–485.
  • Je S-M, Son S-G, Woo S-Y, Byun K-O & Kim C-S (2006) Photosynthesis and chlorophyll contents of Chloranthus glaber under different shading treatments. Korean Journal of Agricultural and Forest Meteorology 8: 54–60.
  • Ji M, Zhang Q, Deng J, Zhang X & Wang Z (2011) Intra-versus inter-population variation of cone and seed morphological traits of Pinus tabulaeformis Carr. in northern China: impact of climate-related conditions. Polish Journal of Ecology 59: 717–727.
  • Körner C (2007) The use of ‘altitude’in ecological research. Trends in Ecology & Evolution 22: 569–574.
  • Labra M, Grassi F, Sgorbati S & Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora-Morphology, Distribution, Functional Ecology of Plants 201: 468–476.
  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends in Ecology & Evolution 17: 183–189.
  • Lhotáková Z, Albrechtová J, Malenovský Z, Rock BN, Polák T & Cudlín P (2007) Does the azimuth orientation of Norway spruce (Picea abies/L./Karst.) branches within sunlit crown part influence the heterogeneity of biochemical, structural and spectral characteristics of needles? Environmental and Experimental Botany 59: 283–292.
  • Losos JB (1996) Phylogenetic perspectives on community ecology. Ecology 77: 1344–1354.
  • Magyari EK, Veres D, Wennrich V, Wagner B, Braun M, Jakab G, Karátson D, Pál Z, Ferenczy G, St-Onge G, Rethemeyer J, Francois JP, von Reumont F & Schäbitz F (2014) Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quaternary Science Reviews 106: 278–298.
  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.
  • Marcysiak K (2004) Interpopulational variability of Pinus uncinata Ramond ex DC. in Lam. & DC. (Pinaceae) cone characters. Dendrobiology 51: 43–51.
  • Marcysiak K (2006) Scots pine (Pinaceae) from the Crimea compared to the species variation in Europe on the basis of cone traits. Phytologia Balcanica 12: 203–208.
  • Mejnartowicz L (1979) Genetic variation in some isoenzyme loci in Scots pine (Pinus sylvestris L.) populations. Arboretum Kórnickie 24: 91–104.
  • Mitka J, Bąba W & Szczepanek K (2014) Putative forest glacial refugia in the Western and Eastern Carpathians. Modern Phytomorphology 5: 85–92.
  • Naydenov KD, Tremblay FM, Alexandrov A & Fenton NJ (2005) Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: provenance tests. Biochemical Systematics and Ecology 33: 1226–1245.
  • Niinemets Ü, Ellsworth DS, Lukjanova A & Tobias M (2001) Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology 21: 1231–1244.
  • Niinemets Ü, Ellsworth DS, Lukjanova A & Tobias M (2002) Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length. Tree Physiology 22: 747–761.
  • Niinemets Ü, Lukjanova A, Turnbull MH & Sparrow AD (2007) Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology 27: 1137–1151.
  • Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology 15: 578–590.
  • Oleksyn J, Tjoelker MG & Reich PB (1998) Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Filva Fennica 32: 129–140.
  • Ovington J (1957) Dry-matter production by Pinus sylvestris L. Annals of Botany 21: 287–314.
  • Pardos JA, Lange W & Weißmann G (1990) Morphological and chemical aspects of Pinus sylvestris L. from Spain. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 44: 143–146.
  • Pawlaczyk EM, Bobowicz MA & Korczyk AF (2010) Zmienność trzech naturalnych populacji Pinus sylvestris L. z różnych siedlisk Puszczy Białowieskiej oszacowana cechami igieł. Leśne Prace Badawcze 71: 83–92.
  • Peakall R & Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.
  • Persson H (1980) Fine-root dynamics in a Scots pine stand with and without near-optimum nutrient and water regimes. Acta Phytogeographica Suecica 68: 101–110.
  • Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palme A, Martin JP, Rendell S & Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563–1565.
  • Prus-Glowacki W & Stephan BR (1994) Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43: 7–14.
  • Prus-Głowacki W, Stephan BR, Bujas E, Alia R & Marciniak A (2003) Genetic differentiation of autochthonous populations of Pinus sylvestris (Pinaceae) from the Iberian peninsula. Plant Systematics and Evolution 239: 55–66.
  • Prus-Głowacki W, Urbaniak L, Bujas E & Curtu AL (2012) Genetic variation of isolated and peripheral populations of Pinus sylvestris (L.) from glacial refugia. Flora-Morphology, Distribution, Functional Ecology of Plants 207: 150–158.
  • Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W & Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177: 1713–1724.
  • Reich PB, Walters MB & Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62: 365–392.
  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M & Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: S143–S164.
  • Reich PB, Koike T, Gower ST & Schoettle AW (1995) Causes and consequences of variation in conifer leaf life-span: Ecophysiology of Conifers (ed. by WK Smith & TM Hinckley) Academic Press, San Diego, CA, pp. 225–254.
  • Remlein A, Jelonek T, Tomczak A, Jakubowski M & Grzywinski W (2015) Morphological architecture of different ecotypes of Scots pine (Pinus sylvestris L.) in Poland. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology 92.
  • Richardson AD, Berlyn GP, Ashton PMS, Thadani R & Cameron IR (2000) Foliar plasticity of hybrid spruce in relation to crown position and stand age. Canadian Journal of Botany 78: 305–317.
  • Richardson AD, Berlyn GP & Gregoire TG (2001) Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamea (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. American Journal of Botany 88: 667–676.
  • Richardson DM & Rundel PW (1998) Ecology and biogeography of Pinus: an introduction: Ecology and biogeography of Pinus (ed. by DM Richardson) Cambridge University Press, pp. 3–46.
  • Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 60: 373–389.
  • Rudner E, Sümegi P, Tóth I, Beszeda I & Hertelendi E (1995) The vegetation of the upper-Weichselian in the central and southern part of the Great Hungarian Plain. 7th European Ecological Congress 1: 108.
  • Rudner ZE & Sümegi P (2001) Recurring Taiga forest-steppe habitats in the Carpathian Basin in the Upper Weichselian. Quaternary International 76: 177–189.
  • Rull V (2009) Microrefugia. Journal of Biogeography 36: 481–484.
  • Schoettle AW, Fahey TJ & Shoettle AW (1994) Foliage and fine root longevity of pines. Ecological Bulletins 43: 136–153.
  • Semiz G, Heijari J, Isik K & Holopainen JK (2007) Variation in needle terpenoids among Pinus sylvestris L. (Pinaceae) provenances from Turkey. Biochemical Systematics and Ecology 35: 652–661.
  • Sobierajska K, Boratyńska K & Marcysiak K (2010) Variation of cone characters in Pinus mugo (Pinaceae) populations in the Giant Mountains (Karkonosze, Sudetes). Dendrobiology 63: 33–41.
  • Staszkiewicz J (1961) Biometric studies on the Cones of Pinus Silvestris L., growing in Hungary. Magyar Tudományos Akadémia.
  • Staszkiewicz J (1993) Zmienność morfologiczna szpilek, szyszek i nasion. Biologia sosny zwyczajnej. PAN Instytut Dendrologii, Poznań–Kórnik.
  • Stieber J (1967) A magyarországi felsöpleisztocén vegetációtörténete az. anthrakotómiai eredmények (1957-IG) Tükrében. Földtani Közlöny 97: 308–317.
  • Szweykowski J & Urbaniak L (1982) An interesting chemical polymorphism in Pinus sylvestris L. Acta Societatis Botanicorum Poloniae 51: 441–452.
  • Tabachnick BG & Fidell LS (2013) Using multivariate statistics, 6th ed. Allyn and Bacon, Boston.
  • Tiwari SP, Kumar P, Yadav D & Chauhan DK (2013) Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas. Turkish Journal of Botany 37: 65–73.
  • Tobolski JJ & Hanover JW (1971) Genetic variation in the monoterpenes of Scotch pine. Forest Science 17: 293–299.
  • Turna I (2003) Variation of some morphological and electrophoretic characters of 11 populations of Scots pine in Turkey. Israel Journal of Plant Sciences 51: 223–230.
  • Turna I & Güney D (2009) Altitudinal variation of some morphological characters of Scots pine (Pinus sylvestris L.) in Turkey. African Journal of Biotechnology 8: 202–208.
  • Urbaniak L (1998) Morphometric differentiation of Corex ligerica Gay in Poland. Acta Societatis Botanicorum Poloniae 67: 263–268.
  • Urbaniak L, Karlinski L & Popielarz R (2003) Variation of morphological needle characters of Scots pine [Pinus sylvestris L.] populations in different habitats. Acta Societatis Botanicorum Poloniae 72: 37–44.
  • Volkova L, Bennett LT, Merchant A & Tausz M (2010) Shade does not ameliorate drought effects on the tree fern species Dicksonia antarctica and Cyathea australis. Trees 24: 351–362.
  • Wahid N, González-Martínez SC, El Hadrami I & Boulli A (2006) Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morocco. Annals of Forest Science 63: 83–92.
  • Willis KJ & Van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369–2387.
  • Yang Y, Liu Q, Han C, Qiao Y, Yao X & Yin H (2007) Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetica 45: 613–619.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-50a160b0-0b55-4047-8a34-e7d535f87921
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.