PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 2 |

Tytuł artykułu

Intra- and interspecific variability of echolocation pulse acoustics in the African megadermatid bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The yellow-winged bat, Lavia frons, and the heart-nosed bat, Cardioderma cor, are sympatric species of the family Megadermatidae resident to East Africa. Cardioderma cor roost in groups and disperse to individual foraging areas at night, whereas L. frons roost in male-female pairs in Acacia trees within a foraging territory. Nightly foraging areas overlap across species, and thus interspecific differences in echolocation may reflect niche differences crucial for coexistence. Here we compare differences in echolocation from hand-released C. cor and L. frons, and L. frons individuals recorded during fly-bys. Furthermore, megadermatids display a host of social behaviors, including territoriality and singing, and thus intraspecific differences in echolocation may be important for facilitating behavior in this family but has not yet been assessed. We report the patterns of variability of echolocation by sex, body size, and individual of C. cor. We measured 354 pulses from 17 C. cor individuals and 35 pulses from four L. frons individuals in Tanzania. Up to four harmonics were observed in both C. cor and L. frons, with the second and third harmonics emphasized and the first suppressed. Cardioderma cor is a surface gleaner while L. frons is an aerial-hawker, and clear differences in frequency metrics (Fmin, Fmax, Fpeak) and duration reflect this. We measured 17 variables including temporal, frequency, and shape metrics for intraspecific C. cor pulse analyses. A MANOVA testing individuality on five principle components was significant, but performed poorly in a discriminant analysis. Body mass and forearm length did not correlate with any pulse metrics. Males had significantly lower Fmin and frequency contour parameters than females, although males were slightly smaller than females. These results suggest that L. frons and C. cor have clear interspecific differences in pulse acoustics that align with guild differences, and may serve heterospecific discrimination, while some intraspecific difference in C. cor, particularly by sex, are suggestive of other factors beyond navigation that influence pulse variability.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.429-443,fig.,ref.

Twórcy

autor
  • Department of Biology, Texas A and M University, College Station, TX 77843-3258, USA
  • Department of Biology, Texas A and M University, College Station, TX 77843-3258, USA

Bibliografia

  • 1. J. Altringham , and M. B. Fenton . 2003. Sensory ecology and communication in the Chiroptera. Pp. 90–127, in Batecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 2. R. Arlettaz , G. Jones , and P. A. Racey . 2001. Effect of ac oustic clutter on prey detection by bats. Nature, 414: 742–745. Google Scholar
  • 3. D. Audet , D. Krull , G. Marimuthu , S. Sumithran , and J. B. Singh . 1991. Foraging behavior of the Indian false vampire bat, Megaderma lyra (Chiroptera: Megadermatidae). Biotropica, 23: 63–67. Google Scholar
  • 4. J. Balcombe 1988. Eavesdropping by bats: the influence of echolocation call design and foraging strategy. Ethology, 79: 158–166. Google Scholar
  • 5. R. M. R. Barclay 1982. Interindividual use of echolocation calls: eavesdropping by bats. Behavioral Ecology and Socio biology, 10: 271–275. Google Scholar
  • 6. A. Bastian , and D. S. Jacobs . 2015. Listening carefully: increased perceptual acuity for species discrimination in multi species signalling assemblages. Animal Behaviour, 101: 141–154. Google Scholar
  • 7. K. M. Bohn , B. Schmidt-French , S. T. Ma , and G. D. Pollak . 2008. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. Journal of the Acoustical Society of America, 124: 1838–1848. Google Scholar
  • 8. J. W. Boughman 1997. Greater spear-nosed bats give groupdistinctive calls. Behavioral Ecology and Sociobiology, 40: 61–70. Google Scholar
  • 9. J. W. Boughman , and G. S. Wilkinson . 1998. Greater spearnosed bats discriminate groupmates by vocalizations. Animal Behaviour, 55: 1717–1732. Google Scholar
  • 10. S. Brinklov , E. K. Kalko , and A. Surlykke . 2009. Intense echolocation calls from two ‘whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllosto midae). Journal of Experimental Biology, 212: 11–20. Google Scholar
  • 11. S. M. M. Brinklov , L. Jackobsen , J. M. Ratcliffe , E. K. V. Kalko , and A. Surlykke . 2011. Echolocation call intensity and directionality in flying short-tailed bats, Carollia perspicillata (Phyllostomidae). Journal of Acoustical Society of America, 129: 427–435. Google Scholar
  • 12. A. K. Brunet-Rossinni , and G. S. Wilkinson . 2009. Methods for age estimation and the study of senescence in bats. Pp. 315–325, in Ecological and behavioral methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). The Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
  • 13. F. B. Bryant , and P. R. Yarnold . 1995. Principal components analysis and exploratory and confirmatory factor analysis. Pp. 99–136, in Reading and understanding multivariate statistics ( L. G. Grimm and P. R. Yarnold , eds.). American Psychological Association, Washington, D.C., 373 pp. Google Scholar
  • 14. G. G. Carter , R. Logsdon, B. D. Arnold , A. Menchaca , and R. A. Medellin . 2012. Adult vampire bats produce contact calls when isolated: Acoustic variation by species, population, colony, and individual. PLoS ONE, 7: e38791. Google Scholar
  • 15. R. Csada 1996. Cardioderma cor. Mammalian Species, 519: 1–4. Google Scholar
  • 16. D. K. Dechmann , S. L. Heucke, L. Giuggioli , K. Safi , C. C. Voigt , and M. Wikelski . 2009. Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society, 276B: 2721–2728. Google Scholar
  • 17. P. Denbigh 1998. System analysis and signal processing. Addison Wesley Longman Limited, Essex, England, 528 pp. Google Scholar
  • 18. A. Denzinger , and H.-U. Schnitzler . 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4: 1–16. Google Scholar
  • 19. P. Faure , and R. Barclay . 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology, 174A: 651–660. Google Scholar
  • 20. L. Feng , Y. Li , and H. Lu . 2013. Dynamic behavioral strategies during sonar signal emission in roundleaf bats. Physiology & Behavior, 122: 172–177. Google Scholar
  • 21. J. Fiedler 1979. Prey catching with and without echolocation in the Indian false vampire (Megaderma lyra). Behavioral Ecology and Sociobiology, 6: 155–160. Google Scholar
  • 22. Z.-Y. Fu , X.-Y. Dai , N. Xu , Q. Shi , G.-J. Li , B. Li , J. Li , J. Li , J. Tang , P. H.-S. Jen , and Q.-C. Chen . 2015. Sexual dimorphism in echolocation pulse parameters of the CF-FM bat, Hipposideros pratti. Zoological Studies, 54: 44. Google Scholar
  • 23. E. H. Gillam 2007. Eavesdropping by bats on the feeding buzzes of conspecifics. Canadian Journal of Zoology, 85: 795–801. Google Scholar
  • 24. E. H. Gillam , and G. Chaverri . 2012. Strong individual signatures and weaker group signatures in contact calls of Spix's disc-winged bat, Thyroptera tricolor. Animal Behaviour, 83: 269–276. Google Scholar
  • 25. L. Gobbel 2002. Morphology of the external nose in Hipposideros diadema and Lavia frons with comments on its diver sity and evolution among leaf-nosed Microchiroptera. Cells Tissues Organs, 170: 39–60. Google Scholar
  • 26. T. A. Griffiths , A. Truckenbrod , and P. J. Sponholtz . 1992. Systematics of megadermatid bats (Chiroptera, Mega derma tidae), based on hyoid morphology. American Museum Novitates, 21: 1–11. Google Scholar
  • 27. M. E. Grilliot , S. C. Burnett , and M. T. Mendonca . 2009. Sexual dimorphism in big brown bat (Eptesicus fuscus) ultrasonic vocalizations is context dependent. Journal of Mammalogy, 90: 203–209. Google Scholar
  • 28. A. Guppy , R. B. Coles , and J. D. Pettigrew . 1985. Echolocation and acoustic communication in the Australian ghost bat, Macroderma gigas (Microchiroptera: Megaderma tidae). Australian Mammalogy, 3: 299–308. Google Scholar
  • 29. D. J. Hartley , and R. A. Suthers . 1987. The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. Journal of the Acoustical Society of America, 82: 1892. Google Scholar
  • 30. K.-G. Heller , and O. von Helversen . 1989. Resource partitioning of sonar frequency bands in rhinolophoid bats. Oeco logia, 80: 178–186. Google Scholar
  • 31. M. W. Holderied , and O. von Helversen . 2003. Echolocation range and wingbeat period match in aerial-hawking bats. Proceedings of the Royal Society, 270B: 2293–2299. Google Scholar
  • 32. W. S. Hudson , and D. E. Wilson , D. 1986. Macroderma gigas. Mammalian Species, 260: 1–4. Google Scholar
  • 33. A. C. Hughes , C. Satasook , P. J. J. Bates , P. Soisook , T. Sritongchuay , G. Jones , and S. Bumrungsri . 2010. Echo location call analysis and presence-only modelling as conservation monitoring tools for rhinolophoid bats in Thailand. Acta Chiropterologica, 12: 311–327. Google Scholar
  • 34. N. Hurtado , R. D. Sepúlveda , and V. Pacheco . 2015. Sexual size dimorphism of a sensory structure in a monomorphic bat. Acta Chiropterologica, 17: 75–83. Google Scholar
  • 35. S. Janssen , and S. Schmidt . 2009. Evidence for a perception of prosodic cues in bat communication: contact call classification by Megaderma lyra. Journal of Comparative Physiology, 195A: 663–672. Google Scholar
  • 36. G. Jones 1999. Scaling of echolocation call parameters in bats. Journal of Experimental Biology, 202: 3359–3367. Google Scholar
  • 37. G. Jones , and B. M. Siemers . 2011. The communicative potential of bat echolocation pulses. Journal of Comparative Phys iology, 197A: 447–457. Google Scholar
  • 38. G. Jones , and E. Teeling . 2006. The evolution of echolocation in bats. Trends in Ecology & Evolution, 21: 149–156. Google Scholar
  • 39. G. Jones , T. Gordon , and J. Nightingale . 1992. Sex and age differences in the echolocation calls of the lesser horseshoe bat, Rhinolophus hipposideros. Mammalia, 56: 189–193. Google Scholar
  • 40. E. K. V. Kalko 1994. Coupling of sound emission and wingbeat in naturally foraging European pipistrelle bats (Micro chiroptera: Vespertilionidae). Folia Zoologica, 43: 363–376. Google Scholar
  • 41. P. Kanuch , T. Aghova , Y. Meheretu , R. Sumbera , and J. Bryja . 2015. New discoveries on the ecology and echolocation of the heart-nosed bat Cardioderma cor with a contribution to the phylogeny of Megadermatidae. African Zoology, 50: 1–5. Google Scholar
  • 42. H. B. Kastein , R. Winter, A. K. V. Kumar , S. Kandula , and S. Schmidt . 2013. Perception of individuality in bat vocal communication: discrimination between, or recognition of, interaction partners? Animal Cognition, 16: 945–959. Google Scholar
  • 43. K. Kazial , S. Burnett , and W. Masters . 2001. Individual and group variation in echolocation calls of big brown bats, Epte sicus fuscus (Chiroptera: Vespertilionidae). Journal of Mammalogy, 82: 339–351. Google Scholar
  • 44. T. Kingston , M. C. Lara, G. Jones , Z. Akbar , T. H. Kunz , and C. J. Schneider . 2001. Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proceedings of the Royal Society, 268B: 1381–1386. Google Scholar
  • 45. M. Knörnschild , K. Jung, M. Nagy , M. Metz , and E. K. V. Kalko . 2012. Bat echolocation calls facilitate social communication. Proceedings of the Royal Society, 279B: 4827–4835. Google Scholar
  • 46. R. Kuc 2010. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation. Journal of the Acoustical Society of America, 128: 3190–3199. Google Scholar
  • 47. R. Kuc 2011. Bat noseleaf model: echolocation function, design considerations, and experimental verification. Journal of the Acoustical Society of America, 129: 3361–3366. Google Scholar
  • 48. E. Kulzer , J. Nelson , J. McKean , and F. Moehres . 1984. Prey-catching behaviour and echolocation in the Australian ghost bat, Macroderma gigas (Microchiroptera: Mega derma tidae). Australian Mammalogy, 7: 37–50. Google Scholar
  • 49. D. Leippert 1994. Social behavior on the wing in the false vampire, Megaderma lyra. Ethology, 98: 111–127. Google Scholar
  • 50. D. Leippert , W. Goymann , H. Hofer , G. Marimuthu , and J. Balasingh . 2000. Roost-mate communication in adult Indian false vampire bats (Megaderma lyra): an indication of individuality in temporal and spectral patterns. Animal Cognition, 3: 99–106. Google Scholar
  • 51. D. Leippert , E. Frank , P. Gabriel , S. Kutter , K. D. Scheideman , N. von Stillfried , and F. Weller . 2002. Prey-correlated spectral changes in echolocation sounds of the Indian false vampire Megaderma lyra. Ethology, 108: 139–156. Google Scholar
  • 52. Y. Li , J. Wang , W. Metzner , B. Luo , T. Jiang , S. Yang , L. Shi , X. Huang , X. Yue , and J. Feng . 2014. Behavioral responses to echolocation calls from sympatric heterospecific bats: implications for interspecific competition. Behavioral Ecology and Sociobiology, 68: 657–667. Google Scholar
  • 53. G. Marimuthu , and G. Neuweiler . 1987. The use of acoustic cues for prey detection by the Indian false vampire bat, Megaderma lyra. Journal of Comparative Physiology, 160A: 509–515. Google Scholar
  • 54. W. M. Masters , K. A. S. Raver , and K. A. Kazial . 1995. Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation. Animal Behaviour, 50: 1243–1260. Google Scholar
  • 55. MATLAB. 2014. MATLAB version 8.4.0 R2014b. The Math - Works Inc., Natick, Massachusetts. Google Scholar
  • 56. A. McWilliam 1987. Territoriality and pair behavior of the Af ri can false vampire bat, Cardioderma cor (Chiroptera: Me gadermatidae), in coastal Kenya. Journal of Zoology (London), 213: 243–252. Google Scholar
  • 57. F. P. Möhres , and G. Neuweiler . 1966. Die Ultraschall- Orientierung der Grossblattfledermäuse (Megadermatidae). Zeitschrift für Vergleichende Physiologie, 53: 195–227. Google Scholar
  • 58. E. S. Morton 1975. Ecological sources of selection on avian sounds. American Naturalist, 109: 17–34. Google Scholar
  • 59. S. Nakano , S. Kitano , K. Nakai , and K. D. Fausch . 1998. Competitive interactions for foraging microhabitat among introduced brook charr, Salvenus fontinalis, and native bull charr, S. confluentus, and westlope cutthroat trout, Onco rhynchus clarki lewisi, in a Montana stream. Environmental Biology of Fishes, 52: 345–355. Google Scholar
  • 60. J. E. Nelson 1989. Megadermatidae. Volume 1b, in Fauna of Australia ( D. Walton and B. Richardson , eds). Australian Governement Publishing Service, Canberra, x + 401–1227. Google Scholar
  • 61. G. Neuweiler 1984. Foraging, echolocation and audition in bats. Naturwissenchaften, 71: 446–455. Google Scholar
  • 62. G. Neuweiler , A. Link , G. Marimuthu , and R. Rübsamen . 1988. Detection of prey in echocluttering environments. Pp. 613–617, in Animal sonar processes and performance ( P. E. Nachtigall , P. E. Moore , and P. W. Moore , eds.). Plenum Press, New York, NY, xv + 862 pp. Google Scholar
  • 63. Petterson . 2003. Batsound 3.31. Petterson Elektronik AB, Uppsala Science Park, Uppsala, Sweden. Google Scholar
  • 64. S. J. Puechmaille , I. M. Borissov , S. Zsebok , B. Allegrini , M. Hizem , S. Kuenzel , M. Schuchmann , E. C. Teeling , and B. M. Siemers . 2014. Female mate choice can drive the evolution of high frequency echolocation in bats: A case study with Rhinolophus mehelyi. PLoS ONE, 9: e103452. Google Scholar
  • 65. H. Raghuram , M. Jain , and R. Balakrishnan . 2014. Species and acoustic diversity of bats in a palaeotropical wet evergreen forest in southern India. Current Science, 10: 631–641. Google Scholar
  • 66. J. M. Ratcliffe , H. Raghuram , G. Marimuthu , J. H. Fullard , and M. B. Fenton . 2005. Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 58: 157–164. Google Scholar
  • 67. R. B. Root 1967. The niche exploitation patterns of the bluegray gnatcatcher. Ecological Monographs, 37: 317–350. Google Scholar
  • 68. I. Ruczynski , E. K. V. Kalko , and B. M. Siemers . 2007. The sensory basis of roost finding in a forest bat, Nyctalus noctula. Journal of Experimental Biology, 210: 3607–3615. Google Scholar
  • 69. I. Ruczynski , E. K. V. Kalko , and B. M. Siemers . 2009. Calls in the forest: A comparative approach to how bats find tree cavities. Ethology, 115: 167–177. Google Scholar
  • 70. D. Russo , G. Jones , and R. Arlettaz . 2007. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology, 210: 166–176. Google Scholar
  • 71. M. J. Ryan , and M. D. Tuttle . 1987. The role of prey-generated sound, vision, and echolocation in prey localization by the African bat Cardioderma cor (Megadermatidae). Journal of Comparative Physiology, 161A: 59–66. Google Scholar
  • 72. SAS. 2014. JMP 11. SAS Institute Inc., Cary, North Carolina. Google Scholar
  • 73. S. Schmidt 2014. Beyond echolocation: emotional acoustic communication in bats. Pp. 92–104, in Evolution of emotional communication: from sounds in nonhuman mam mals to speech and music in man ( E. Altenmuller , S. Schmidt , and E. Zimmerman , eds.). Oxford University Press, Oxford, xiv, 376 pp. Google Scholar
  • 74. S. Schmidt , S. Hanke , and J. Pillat . 2000. The role of echolocation in the hunting of terrestrial prey — new evidence for an underestimated strategy in the gleaning bat, Megader ma lyra. Journal of Comparative Physiology, 186A: 975–988. Google Scholar
  • 75. H.-U. Schnitzler , and O. W. Henson . 1980. Performance of airborne animal sonar systems: I. Microchiroptera. Pp. 109–181, in Animal sonar systems ( R.-G. Busnel and J. F. Fish , eds.). Plenum Press, New York, NY, 136 pp. Google Scholar
  • 76. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
  • 77. M. Schuchmann , and B. Siemers . 2010. Behavioral evidence for community-wide species discrimination from echolocation calls in bats. The American Naturalist, 176: 72–82. Google Scholar
  • 78. M. Schuchmann , S. J. Puechmaille , and B. M. Siemers . 2012. Horseshoe bats recognize the sex of conspecifics from their echolocation calls. Acta Chiropterologica, 14: 161–166. Google Scholar
  • 79. C. Schwartz , J. Tressler , H. Keller , M. Vanzant , S. Ezell , and M. Smotherman . 2007. The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Taderida brasiliensis. Journal of Comparative Physiology, 193A: 853–863. Google Scholar
  • 80. R. S. Silkes, W. L. Gannon, and The Animal Care and Use Commitee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 81. M. D. Skowronski , and M. B. Fenton . 2008. Model-based automated detection of echolocation calls using the link detector. Journal of the Acoustical Society of America, 124: 328–336. Google Scholar
  • 82. P. Soisook , A. Prajakjitr , S. Karapan , C. M. Francis , and P. J. Bates . 2015. A new genus and species of false vampire (Chiroptera: Megadermatidae) from peninsular Thailand. Zootaxa, 3931: 528–550. Google Scholar
  • 83. H. Stephan , J. E. Nelson , and H. D. Frahm . 1981. Brain size comparison in Chiroptera. Journal of Zoological Systematics and Evolutionary Research, 19: 222–229. Google Scholar
  • 84. P. J. Taylor , C. Geiselman , P. Kabochi , B. Agwanda , and S. Turner . 2005. Intraspecific variation in the calls of some African bats (Order Chiroptera). Durban Museum Novi tates, 30: 24–37. Google Scholar
  • 85. A. Thornton , and S. J. Hodge . 2009. The development of foraging microhabitat preferences in meerkats. Behavioral Ecol ogy, 20: 103–110. Google Scholar
  • 86. C. R. Tidemann , D. M. Priddel , J. E. Nelson , and J. D. Pettigrew . 1985. Foraging behaviour of the Australian ghost bat, Macroderma gigas (Microchiroptera: Megadermatidae). Australian Journal of Zoology, 33: 705–713. Google Scholar
  • 87. K. Tyrell 1990. The ethology of the Malayan false vampire bat (Megaderma spasma), with special emphasis on auditory cues used in foraging. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, 210 pp. Google Scholar
  • 88. D. Vanderelst , F. D. Mey , H. Peremans , I. Geipel , E. Kalko , and U. Firzlaff . 2010. What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5: e11893. Google Scholar
  • 89. T. A. Vaughan 1976. Nocturnal behavior of the African false vampire bat (Cardioderma cor). Journal of Mammalogy, 57: 227–248. Google Scholar
  • 90. T. A. Vaughan 1987. Behavioral thermoregulation in the African yellow-winged bat. Journal of Mammalogy, 68: 376–378. Google Scholar
  • 91. T. A. Vaughan , and R. P. Vaughan . 1986. Seasonality and the behavior of the African yellow-winged bat. Journal of Mammalogy, 67: 91–102. Google Scholar
  • 92. S. L. Voigt-Heucke , M. Taborsky , and D. K. N. Dechmann . 2010. A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Animal Behaviour, 80: 59–67. Google Scholar
  • 93. M. J. Vonhof , and M. C. Kalcounis . 1999. Lavia frons. Mammalian Species, 614: 1–4. Google Scholar
  • 94. D. A. Waters , and G. Jones . 1994. Echolocation call structure and intensity in five species of insectivorous bats. Journal of Experimental Biology, 198: 475–489. Google Scholar
  • 95. W. Wickler , and D. Uhrig . 1969. Verhalten und ökologische Nische der Gelbflügelfledermaus, Lavia frons (Geoffroy) (Chiroptera, Megadermatidae). Zeitschrift für Tierphysiologie, 26: 726–736. Google Scholar
  • 96. Y. Yovel , M. L. Melcon , M. O. Franz , A. Denzinger , and H.-U. Schnitzler . 2009. The voice of bats: how greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Computational Biology, 5: e1000400. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-504d9ec2-f389-423f-8ce6-c42cc5b8ab7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.