PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

Selected problems of experimental testing marine stern tube bearings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents typical methods for conducting experimental tests on main shaft slide bearings. There are described their possible testing capabilities , advantages , drawbacks and limitations. Various testing methods were analyzed to find a solution able of providing a wide range of possible investigations at possibly acceptable limitations

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.142-154,fig.,ref.

Twórcy

  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Bibliografia

  • 1. R. Orndorff :Water lubricated rubber bearings, history and new developments, Nav Eng J, 1985, pp. 39–52,.
  • 2. H. Hira ni a nd M. Verma: Tribological study of elastomeric bearings for marine propeller shaft system, Tribol. Int., vol. 42, 2009, No. 2, pp. 378–390.
  • 3. W. Litwin and C. Dymarski: Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear, Tribol. Int., vol. 95, 2016, pp. 449–455,.
  • 4. W. Litwin : Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests, Tribol. Int., vol. 90, 2015, pp. 404–411.
  • 5. B. J. Blair: Getting the most from your bearings. World Pumps, vol. 2016,No. 7–8, pp. 36–40,.
  • 6. M. Wodtke and M. Wasilczuk: Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings, Tribol. Int., vol. 97, 2016, pp. 244–252.
  • 7. W. Litwin, A. Olszewski, and M. Wodtke: Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng. Mater., vol. 490, 2011, pp. 128–134,
  • 8. W. Litwin : Water lubricated marine stern tube bearings – Attempt at estimating hydrodynamic capacity,” in Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009, 2010.
  • 9. W. Litwin : Influence of local bu sh wear on water lubr icated sliding bearing load carrying capacity. Tribol. Int., vol. 103, 2016.
  • 10. Q. Hongling, Z. Xincong, X. Chuntao, W. Hao, and L. Zhenglin: Tribological Performance of a Polymer Blend of NBR Used for Stern Bearings, 2012, pp. 133–139,.
  • 11. Y. Wang, X. Shi, and L. Zhang,: Experimental and numerical study on water-lubricated rubber bearings, Ind. Lubr. Tribol. Exp., vol. 2, 2014, no. 51175275, pp. 282–288,.
  • 12. M. Del Din and E. Kassfeldt: Wear characteristics with mixed lubrication conditions in a full scale journal bearing, Wear, vol. 232, 1999, no. 2, pp. 192–198,
  • 13. D. L. Cabrera, N. H. Woolley, D. R. Allanson, and Y. D Tr id i ma s: Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 219, 2005, no. 2, pp. 125–132,
  • 14 . Y. Z h i m i n et al.: Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material, Wear, vol. 332–333, 2015, pp. 872–878.
  • 15. R . Colsher, I. A nwa r, J. Du nfee, a nd M. Ka nd l: Development of Water Lubricated Bearing for Steam Turbine Application, J. Lubr. Technol., vol. 105, 1983, no. 3, p. 318.
  • 16. G. Gao, Z . Yin, D. Jia ng, a nd X . Zha ng: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol. Int., vol. 75, 2014, pp. 31–38.
  • 17. A.-F. Cristea, J. Bouyer, M. Fillon, and M. D. Pascovici; Transient Pressure and Temperature Field Measurements of a Lightly Loaded Circumferential Groove Journal Bearing, Tribol. Tra ns., vol. 54, 2011, no. 5, pp. 806–823.
  • 18. R. Gawarkiewicz and M. Wasilczuk: Wear mea sure ment s of self-lubricating bearing materials in small oscillatory movement, Wear, vol. 263, 2007, no. 1–6 SPEC. ISS., pp. 458–462.
  • 19. A. Olszewski, M. Wodtke, and P. Hryniewicz: Experimental Investigation of Prototype Water-Lubricated Compliant Foil Bearings, Key Eng. Mater., vol. 490, 2011, pp. 97–105.
  • 20. M. Wodtke, A. Schubert, M. Fillon, M. Wasilczuk, and P. P a j a c z k o w s k i : Large hydrodynamic thrust bearing: Comparison of the calculations and measurements, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 228, 2014, no. 9, pp. 974–983.
  • 21. M. Mehdizadeh and F. Khodabakhshi: An investigation into failure analysis of interfering part of a steam turbine journal bearing, Case Stud. Eng. Fail. Anal., vol. 2, 2014, no. 2, pp. 61–68,.
  • 22. W. Wieleba : The Mechanism of Tribological Wear of Thermoplastic Materials, Arch. Civ. Mech. Eng., Vol. VII, 2007, No. 4.
  • 23. J. Takabi and M. M. Khonsari: On the thermally-induced seizure in bearings: A review, Tribol. Int., vol. 91, 2015, pp. 118 –130.
  • 24. Q. Wang : Seizure failure of journal-bearing conformal contacts, Wear, vol. 210, 1997, no. 1–2, pp. 8–16.
  • 25. D. Garner, A. L.-P. of the 13th, and undefined 1984,Temperature measurements in fluid film bearings, oaktrust.library.tamu.edu.
  • 26. P. De Choudhury and E. W. Barth: A Comparison of Film Temperatures and Oil Discharge Temperature for a Tilting-Pad Journal Bearing, J. Tribol., vol. 103, 1981, no. 1, p. 115.
  • 27. S. Strzelecki, Z. S.- Tribologia, and undefined 2011, Operating temperatures of the bearing system of grinder spindle, t.tribologia.eu.
  • 28. D. G. Lee and S. S. Kim: Failure analysis of asbestos-phenolic composite journal bearing, Compos. Struct., vol. 65, 2004, no. 1, pp. 37–46.
  • 29. S. B. Glavatskih and M. Fillon: TEHD Analysis of Thrust Bearings With PTFE-Faced Pads, J. Tribol., vol. 128, 2006, no. 1, p. 49.
  • 30. O. Nosko, T. Naga mine, A. L . Nosko, A. M. Romash ko, H. Mori, and Y. Sato: Measurement of temperature at sliding polymer surface by grindable thermocouples, Tribol. Int., vol. 88, 2015, pp. 100–106.
  • 31. M. Hoić, M. Hrgetić, and J. Deur: Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application, Mechatronics, vol. 40, 2016, pp. 220–232.
  • 32. E. Ciulli, P. Forte, M. Libraschi, and M. Nuti : Set-up of a novel test plant for high power turbomachinery tilting pad journal bearings, Tribol. Int., vol. 127, no. November 2017, pp. 276–287, 2018.
  • 33. P. Śliwiński : The Influence of Water and Mineral Oil On Mechanical Losses in the Displacement Pump for Offshore and Marine Applications: Polish Marit. Res., vol. 25, 2018, no. s1, pp. 178–188.
  • 34. A. Dadouche, M. Fillon, and J. . Bligoud: Experiments on thermal effects in a hydrodynamic thrust bearing, Tr i b o l . Int., vol. 33, 2000, no. 3–4, pp. 167–174.
  • 35. B. Remy, B. Bou-Saïd, and T. Lamquin : Fluid inertia and energy dissipation in turbocharger thrust bearings, Tribol. Int., vol. 95, 2016, pp. 139–146.
  • 36. S. B. Glavatskih: A method of temperature monitoring in fluid film bearings, Tribol. Int., vol. 37, 2004, no. 2, pp. 143 –14 8.
  • 37. T. W. Kerlin and M. Johnson: Practical Thermocouple Thermometry (2nd Edition). ISA, 2012.
  • 38. W. Dai, B. Kheireddin, H. Gao, and H. Liang : Roles of nanoparticles in oil lubrication, Tribol. Int., vol. 102, 2016, pp. 88–98.
  • 39. J. Duchowski : Examination of journal bearing filtration requirements, Lubr. Eng., vol. 09, 1998, pp. 1–9.
  • 40. J. Duchowsk i, H. Internat iona l, a nd J. Duchowsk i: Filtration requirements for journal bearings exposed to different contaminant levels, Lubr. Eng., vol. 06, 2002, no. July, pp. 34–39.
  • 41. D. Hargreaves and S. C. Sharma: Effects of solid contaminants on journal bearing performance, Proceedings of the 2nd World Tribology Congress, 3-7 September 2001. pp. 237–240.
  • 42. A. Dadouche and M. J. Conlon: Operational performance of textured journal bearings lubricated with a contaminated fluid, Tribol. Int., vol. 93, 2016, pp. 377–389.
  • 43. M. M. Khonsari and E. R. Booser: Effect of contamination on the performance of hydrodynamic bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, 2006, no. 5, pp. 419–428.
  • 44. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen: Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts, Tribol. Lett., vol. 63, 2016, no. 2, pp. 1–14.
  • 45. A. Akchurin, R. Bosman, and P. M. Lugt: Generation of wear particles and running-in in mixed lubricated sliding contacts, Tribol. Int., vol. 110, 2017, no. February, pp. 201–208.
  • 46. A. Akchurin, R. Bosman, and P. M. Lugt: A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts, Tribol. Lett., vol. 64, 2016, no. 3, pp. 1–12.
  • 47. G. Pintaude: Characteristics of Abrasive Particles and Their Implications on Wear, New Tribol. Ways, no. April 2011.
  • 48. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan : The characterization of wear transitions in sliding wear process contaminated with silica and iron powder, Tribol. Int., vol. 38, 2005, no. 2, pp. 129–143.
  • 49. L. Peña-Parás et al.: Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding, Tribol. Int., vol. 119, 2018, no. February 2017, pp. 88–98.
  • 50. S. M. Park, G. H. Kim, and Y. Z. Lee: Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants, Wear, vol. 271, 2011, no. 9–10, pp. 2193–2197.
  • 51. E. Szymczak and D. Burska : Charakterystyka rozkładu wielkości cząstek in situ w strefie rozpływu wód Wisły (Zatoka Gdańska) (in Polish). ?? pp. 1–2, 2014.
  • 52. M. Damrat, A. Zaborska, and M. Zajaczkowski: Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea), Oceanologia, vol. 55, 2013, no. 4, pp. 937–950.
  • 53. I. Geologiczny and I. Geologii ?? : Litologia i skład mineralny osadów z dna Basenu Gdańskiego (in Polish), ?? vol. 313, 1980, no. 2.
  • 54. T. Leipe and B. Sea : The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material, Baltica, vol. 16, 2003, pp. 31–36.
  • 55. A. Ya and T. Yu : Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE, vol. 9638, 2015, pp. 1–12.
  • 56. Y. Solomonov: Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disk test rig, Yuriy Solomonov Master of Philosophy Thesis, The University of Adelaide School of Mechanical Engineering April 2014.
  • 57. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan: Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions, Wear, vol. 332–333, 2015, pp. 1012–1020.
  • 58. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai: Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys, Wear, vol. 384–385, 2017, pp. 185–191.
  • 59. C. P. Gao et al.: Tribological behaviors of epoxy composites under water lubrication conditions, Tribol. Int., vol. 95, 2016, pp. 333–341.
  • 60. S. Thörmann, M. Markiewicz, and O. von Estorff: On the stick-slip behaviour of water-lubricated rubber sealings, J. Sound Vib., vol. 399, 2017, pp. 151–168.
  • 61. B. S. Ma nn a nd V. A r ya : An experimental model for mixed friction during running-in, Wear, vol. 253, 2002, no. 5–6, pp. 541–549.
  • 62. L. Deleanu and C. Georgescu: Water lubrication of PTFE composites, Ind. Lubr. Tribol., vol. 67, 2015, no. 1, pp. 1–8.
  • 63. S. Chen et al.: Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings, Tribol. Int., vol. 115, 2017, no. 126, pp. 470–476.
  • 64. A. Ismailov, M. Järveläinen, and E. Levänen: Problematics of friction in a high-speed rubber-wheel wear test system: A case study of irregularly rough steel in water lubricated contact, Wear, vol. 408–409, 2018, no. December 2017, pp. 65–71.
  • 65. C. Dong, L. Shi, L. Li, X. Bai, C. Yuan, and Y. Tian : Stick-slip behaviours of water lubrication polymer materials under low speed conditions, Tribol. Int., vol. 106, 2017, no. October 2016, pp. 55–61.
  • 66. S. Meicke and R. Paasch : Seawater lubricated polymer journal bearings for use in wave energy converters, Renew. Energy, vol. 39, 2012, no. 1, pp. 463–470.
  • 67. S. Jiang, Z. Guo, C. Yuan, A. Liu, and X. Bai : Study on the tribological properties of modified polyurethane materia for water-lubricated stern bearing, J. Appl. Polym. Sci., vol. 135, 2018, no. 22, pp. 1–13.
  • 68. J. Bouyer and M. Fillon : Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up, Tribol. Int., vol. 44, 2011, no. 7–8, pp. 772–781.
  • 69. Ł. Breńkacz and G. Żywica :The experimental identification of the dynamic coefficients for two hydrodynamic journal bearings, SIRM 2017, Schwingungen rotierenden Maschinen, vol. 24, 2017, no. 96, pp. 157–164.
  • 70. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire: A New Fluid Film Bearing Test Rig for Oil and Water Bearings, Struct. Dyn. Parts A B, Vol. 5, 2008, pp. 1101–1110.
  • 71. N. Wang and Q. Meng : Research on wireless nondestructive monitoring method for film pressure of water-lubricated bearing, Ind. Lubr. Tribol., vol. 67, 2015, no. 4, pp. 349–358.
  • 72. N. Wang, Q. Meng, P. Wang, T. Geng, and X. Yuan: Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves, J. Fluids Eng., vol. 135, 2013, no. 8, p. 84501.
  • 73. S. Yamajo and F. Kikkawa: Development and Application of PTFE Compound Bearings, Dyn. Position. Conf., 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4df54154-e23e-4ac1-b923-1d8c98cf7c99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.