PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

An insight into cotton genetic engineering (Gossypium hirsutum L.): current endeavors and prospects

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cotton (Gossypium hirsutum L.) is the most significant cash crop and backbone of global textile industry. The importance of cotton can hardly be over emphasized in the economy of cotton-growing countries as cotton and cotton products contribute significantly to the foreign exchange earnings. Cotton breeders have continuously sought to improve cotton’s quality through conventional breeding in the past centuries; however, due to limited availability of germplasm with resistant to particular insects, pests and diseases, further advancements in cotton breeding have been challenging. The progress in transformation systems in cotton paved the way for the genetic improvement by enabling the researchers to transfer specific genes among the species and to incorporate them in cotton genome. With the development of first genetically engineered cotton plant in 1987, several characteristics such as biotic (insects, viruses, bacteria and fungi) resistance, abiotic (drought, chilling, heat, salt), herbicide tolerance, manipulation of oil and fiber traits have been reported to date. Genetic engineering has emerged as a necessary tool in cotton breeding programs, strengthening classical strategies to improve yield and yield contributing factors. The current review highlights the advances and endeavors in cotton genetic engineering achieved by researchers worldwide utilizing modern biotechnological approaches. Future prospects of the transgenic cotton are also discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde University, 51240, Nigde, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, University of Ankara, 06110, Diskapi-Ankara, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, University of Ankara, 06110, Diskapi-Ankara, Turkey
autor
  • Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde University, 51240, Nigde, Turkey
autor
  • Department of Biology, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, University of Ankara, 06110, Diskapi-Ankara, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, University of Ankara, 06110, Diskapi-Ankara, Turkey

Bibliografia

  • Agrawal DC, Banerjee AK, Kolala RR, Dhage AB, Kulkarni WV, Nalawade SM, Hazra S, Krishnamurthy KV (1997) In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 16:647–652
  • Ahmad S, Khan N, Iqbal M, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1:715–719
  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42
  • Alt-Morbe J, Kithmann H, Schroder J (1989) Differences in induction of Ti-plasmid virulence genes virG and virD and continued control of vir D expression by four external factors. Mol Plant Microbe Interact 2:301–308
  • Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101:300–307
  • Andrews RW, Fausr R, Wabiko MH, Roymond KC, Bulla LA (1987) Biotechnology of Bt: a critical review. Biotechnology 6:163–232
  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940
  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30
  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16
  • Bajwa KS, Shahid AA, Rao AQ, Kiani MS, Ashraf MA, Dahab AA, Bakhsh A, Latif A, Khan MAU, Puspito AN, Aftab A, Bashir A, Husnain T (2013) Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aus J Crop Sci 7:206–212
  • Bakhsh A (2010) Expression of two insecticidal genes in Cotton. Ph.D. Thesis, The University of Punjab, Lahore, Pakistan, p 60
  • Bakhsh A (2014) Engineering crop plants against abiotic stress: current achievements and future prospects. Emir J Food Agric 27:24–39
  • Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009) Insect resistance and risk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes. Am Eur J Agric Environ Sci 6:1–11
  • Bakhsh A, Siddiq S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74
  • Bao YG, Zhao R, Li FF, Tang W, Han LB (2011) Simultaneous expression of Spinacia oleracea chloroplast choline onooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Report 29:379–388
  • Beachy RN (1997) Mechanisms and application of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220
  • Bell AA (1986) Physiology of secondary products. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, pp 597–621
  • Benedict CR, Alchanati I, Harvey PJ, Liu JG, Stipanovic RD, Bell AA (1995) The enzymatic formation of delta-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry 39:327–331
  • Benedict CR, Martin GS, Liu J, Puckhaber L, Magill CW (2004) Terpenoid aldehyde formation and lysigenous gland storage sites in cotton: variant with mature glands but suppressed levels of terpenoid aldehydes. Phytochemistry 65:1351–1359
  • Bidney D, Scelonge C, Martich J, Burus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increased transformation frequency of Agrobacterium tumefaciens. Plant Mol Biol 18:301–313
  • Blunden G, Patel AV, Armstrong NJ, Gorham J (2001) Betaine distribution in the Malvaceae. Phytochemistry 58:451–454
  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448
  • Bradow JM (1991) Cotton cultivar responses to suboptinal postemergent temperatures. Crop Sci 31:1595–1599
  • Briddon RW, Markham PG (2000) Cotton leaf curl disease. Virus Res 71:151–159
  • Brookes G, Barfoot P (2010) GM Crops: Global Socio-economic and Environmental Impacts 1996–2008. P.G. Economics Ltd, Dorchester
  • Cerny RE, Bookout JT, CaJacob CA, Groat JR, Hart JL, Heck GR et al (2010) Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Sci 50:1375–1384
  • Chakrabarty PK, Kalbande B, Chavhan R, Warade J, Bajaj D, Sable S, Nandeshwar SB, Monga D (2010) Engineering cotton leaf curl virus resistance cotton through Rna interference approach. In: Proceedings of World Cotton Research Conference-5. Mumbai Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relation, photosynthetic ability and growth of Thai Jasmine rice (Oryza
  • sativa L. ssp. Indica Cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. J Agron Crop Sci 192:25–36
  • Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annal Bot 103:551–560
  • Chee PW, Campbell BT (2009) Bridging classical and molecular genetics of cotton fiber quality and development. Genom Cotton. Springer Inc, New York, pp 283–311
  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257
  • Chen H, Zhu LJ, Min SJ (2003) Progress of studies on fibroin genes of Bombyx mori (in Chinese). Bull Sci Tech 19:260–263
  • Chen YS, Hubmeier C, Tran M, Martens A, Cerny RE, Sammons RD, CaJacob C (2006) Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications. Plant Biotechnol J 4:477–487
  • Cohen BM, Gould F, Bentur JC (2000) Bt rice: practical steps to sustainable use. Int Rice Res Notes 2:4–10
  • Cui Y, Bell AA, Joost O, Magill C (2000) Expression of potential defense response genes in cotton. Physiol Mol Plant Pathol 56:25–31
  • Daud MK, Variath MT, Ali S, Jamil M, Khan MT, Shafi M, Shuijin Z (2009) Genetic transformation of bar gene and its inheritance and segregation behavior in the resultant transgenic cotton germplasm (BR001). Pak J Bot 41:2167–2178
  • Deng J, Jian L (2001) Advances of studies on plant freezing-tolerance mechanism: freezing tolerance gene expression and its function. Chin Bull Bot 18:521–530
  • DeRidder BP, Crafts-Brandner SJ (2008) Chilling stress response of postemergent cotton seedlings. Physiol Plant 134:430–439
  • Dhaliwal HS, Kawai M, Uchimiya H (1998) Genetic engineering for abiotic stress tolerance in plants. Plant Biotechnol 15:1–10
  • Duan X, Song Y, Yang A, Zhang J (2009) The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 135:281–295
  • Duke SO, Baerson SR, Rimando AM (2003) Herbicides: Glyphosate. In; Plimmer JR, Gammon DW, Ragsdale NN (eds) Encycl. Of Agrochemicals. Wiley, New York. http://www.interscience. wiley.com/eoa/articles/agr119/frame.html. Verified 23 May 2006
  • Dzitoyeva S, Dimitrijevic N, Manev H (2001) Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry 6:665–670
  • Entine J (2006) Beyond precaution. In: Entine J (ed) Let them eat precaution: how politics is undermining the genetic revolution in agriculture. AEI Press, Washington, DC, pp 1–14
  • Estruch JJ, Waren GW, Mullis MA, Nye GJ, Craing JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394
  • Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng M-G, Shen Z (2007) Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins. Appl Environ Microbiol 73:956–961
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391:806–811
  • Firozabady E, Deboer DL, Merlo DJ (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116
  • Fitzgerald TL, Waters DL, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11:119–130
  • Foolad M (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell 76:101–119
  • Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Song P-S, Jayabalan N (2009) Transgenic Indian cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Plant Biochem Biotechnol 5:63–74
  • Ghanem ME, Albacete A, Martinez-Andujar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Perez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050
  • Gorham J (1996) Glycine betaine is a major nitrogen-containing solute in the Malvaceae. Phytochemistry 43:367–369
  • Gould J, Magallanes-Cedeno M (1998) Adaptation of cotton shoot apex culture to agrobacterium-mediated transformation. Plant Mol Biol Report 16:1–10
  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331
  • Gryspeirt A, Grégoire JC (2012) Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins. Toxins 4:810–835
  • Guo X, Huang C, Jin S, Liang S, Nie Y, Zhang X (2007) Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration. Biol Plant 51:242–248
  • Hammond SM, Caudy AA, Hannon GJ (2001) Posttranscriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119
  • Hannon GJ (2002) RNA interference. Nature 418:244–251
  • Haq I (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Report 22:279–288
  • Harvest choice (2009) Biotic constraints [webpage]. http://harvest choice.org/production/biotic/pests_diseases
  • He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tissue Organ Cult 101:65–78
  • Herrnstadt G, Soares RW, Edward L, Edwards D (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Biotechnology 4:305–308
  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282
  • Hofte H, Whitely HR (1989) Insecticidal crystal protein of Bacillus thuriengenesis. Microbiol Rev 53:242–255
  • Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloid Surf B Biointerfaces 45:131–135
  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231
  • Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF (2005) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329
  • Hussain SS (2002) Genetic Transformation of Cotton with Galanthus Nivalis Agglutinin (GNA) gene. Ph.D. Thesis, CEMB, University of the Punjab, Lahore, Pakistan
  • Hussain SS, Husnain T, Riazuddin S (2007) Sonication assisted Agrobacterium mediated transformation (SAAT): an alternative method for cotton transformation. Pak J Bot 39:223–230
  • James C (2011) Global status of commercialized biotech/GM crops: ISAAA Brief No. 43, ISAAA, Ithaca, NY
  • James C (2013) Global status of commercialized biotech/GM crops: ISAAA Brief No. 46, ISAAA, Ithaca, NY
  • James C (2014) Global status of commercialized biotech/GM crops: ISAAA Brief No. 49, ISAAA, Ithaca, NY
  • John ME (1996) Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol 30:297–306
  • Joshi CP, Nguyen HT (1996) Differential display-mediated rapid identification of different members of a multigene family, 16.9 in wheat. Plant Mol Biol 31:575–584
  • Katageri IS, Vamadevaiah HM, Khadi BM, Kumar PA (2007) Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci 93:1843–1847
  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU (2008) Tissue culture-independent in planta transformation strategy: anAgrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272
  • Khan N (2003) NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. Biol plant 47:437–440
  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against Lepidopteran pest (Helicoverpa armigera). Span J Agr Res 9:296–300
  • Khan GA, Bakhsh A, Ghazanffar M, Riazuddin S, Husnain T (2013) Development of transgenic cotton pure lines harboring a pesticidal gene (cry1Ab). Emir J Food Agric 25:434–442
  • Kiani S, Mohamed BB, Shehzad K, Jamal A, Shahid MN, Shahid AA, Husnain T (2013) Chloroplast targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests. J Biotechnol 166:88–96
  • King AC, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate- tolerant soybean in response to glyphosate applications. Agron J 93:179–186
  • Klee H (2000) A guide to agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451
  • Klosterman S, Atallah Z, Vallad G, Subbarao K (2009) Diversity, pathogenicity and management of Verticillium species. Annu Rev Phytopathol 47:39–62
  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vector caring two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selective markers. Plant J 10:165–174
  • Kouser S, Qaim M (2012) Valuing financial, health and environmental benefits of Bt cotton in Pakistan. In: The International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguac¸u, Brazil. doi:10.1111/agec.12014
  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350
  • Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var tenebrionis: a new pathotype effective against larvae of coleopteran. J Appl Entomol 96:500–508
  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants-physiological, biochemical and genetic perspectives. INTECH publishers, pp 269–296 (ISBN: 978-958-307-672-0)
  • Leelavathi S, Sunnichan SG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacteriummediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470
  • Li X, Wang XD, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep 22:691–697
  • Li F, Wu S, Chen T, Zhang J, Wang H, Guo W, Zhang T (2009a) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue Organ Cult 97:225–235
  • Li F, Wu S, Lu F, Chen T, Ju M, Wang H, Jiang Y, Zhang J, Guo W, Zhang T (2009b) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chin Sci Bull 54:1210–1216
  • Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z (2013) Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11:747–758
  • Liu CJ, Heinstein P, Chen XY (1999) Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant Microbe Interact 12:1095–1104
  • Liu HC, Creech RG, Jenkins JN, Ma DP (2000) Cloning and promoter analysis of the cotton lipid transfer protein gene Lpt3. Biochim Biophys Acta 1487:106–111
  • Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the agrobacterium IPT gene. Biol Plant 56:237–246
  • Lössl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases achievements, challenges and scopes. Plant Biotechnol J 9:527–539
  • Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-deltacadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28:95–104
  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248
  • Lycett GW, Grierson D (1990) Genetic engineering of crop plants. Butterworth Heinemann, London
  • Lynch JA, Desplan C (2006) A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1:486–494
  • Ma DP, Tan H, Si Y, Greech RG, Jenkins JN (1995) Differential expression of a lipid transfer protein gene in cotton fiber. Biochim Biophys Acta 1257:81–84
  • Mahmood-ur-Rahman Hussain K, Khan MA, Bakhsh A, Rao AQ (2012) An insight of cotton leaf curl virus: a devastating plant pathogenic begomovirus. Pure Appl Bio 1:52–58
  • Majeed A, Husnain T, Riazuddin S (2000) Transformation of virusresistant Gossypium hirsutum L. genotype CIM-443 with pesticidal gene. Plant Biotech 17:105–110
  • Mansoor S, Bedford I, Pinner MS, Stanley J, Markham PG (1993) A whitefly-transmitted geminivirus associated with cotton leaf curl disease in Pakistan. Pak J Bot 25:105–107
  • Mao J, Zeng F (2014) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23:389–396
  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673
  • Maqbool A (2009) Search for drought tolerant genes through differential display. Ph.D. thesis, The University of Punjab, Lahore, Pakistan
  • Maqbool A, Zahur M, Irfan M, Qaiser U, Rashid B, Husnain T, Riazuddin S (2007) Identification, characterization and expression of drought related alphacrystalline heat shock protein gene (GHSP26) from Desi Cotton (Gossypium arboreum L.). Crop Sci 47:2437–2444
  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum L. Biotechnol Progress 26:21–25
  • Martin GS, Liu J, Benedict CR, Stipanovic RD, Magil CW (2003) Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-d-cadinene synthase. Phytochem 62:31–38
  • May OL, Wofford TJ (2000) Breeding transformed cotton expressing enhanced fiber strength. J New Seed 2:1–13
  • Meek CR, Oosterhuis D (2000) Effects of glycine betaine and water regime on diverse cotton cultivars. In: Proceedings of the 2000 cotton Research Meeting, vol 198. AAES Special Report, pp 109–112
  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T et al (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 10222:7812–7816
  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against differentpathogens through a priming mechanism. BMC Plant Biol 10:67
  • Miller ED, Hemenway C (1998) History of coat protein-mediated protection. Methods Mol Biol 81:25–38
  • Mittal A, Gampala SSL, Titchie GL, Payton P, Burke J, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotech J 12:578–589
  • Monga D, Chakrabarty PK, Kranthi R (2011) Cotton leaf curl disease in India-recent status and management strategies. Presented in 5th meeting of Asian Cotton Research and Development Network Held in Lahore in February 23–25
  • Munis M, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X (2010) A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 393:38–44
  • Munns R (2002) Salinity, growth and phytohormones. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Kluwer Academic Publishers, Dordrecht, pp 271–290
  • Naidu BP, Cameron DF, Konduri SV (1998) Improving drought tolerance of cotton by glycine betaine application and selection. In: Proceedings of the 9th Australian agronomy conference, Wagga Wagga. http://www.regional.org.au/au/asa/1998/4/221naidu.html
  • Naimov S, Dukiandjiev S, Maagd RD (2003) A hybrid Bacillus thuringiensis deltaendotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57
  • Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbernicillin and cefotaxime in concentration suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177
  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr J Biotech 5475–5480
  • Neves-Borges AC, Collares WM, Pontes JA, Breyne P, Farinelli L, de Oliveira DE (2001) Coat protein RNA-mediated protection against Andean potato mottle virus in transgenic tobacco. Plant Sci 160:699–712 Orford SJ, Timmis JN (1998) Specific expression of an expansin gene during elongation of cotton fibers. Biochim Biophys Acta 1398:342–346
  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs FL, Kishore GM, Fraley RT (1996) New weed control opportunities: development of soybeans with a roundup ready gene. In: Duke SO (ed) Herbicide-Resistant Crops. CRC Press, Boca Raton, pp 53–84
  • Palle SR, Campbell LM, Pandeya D, Puckhaber L, Tollack LK, Marcel S, Sundaram S, Stipanovic RD, Wedegaertner TC, Hinze L, Rathore KS (2013) RNAi-Mediated ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11:296–304
  • Pang SZ, Jan FJ, Tricoli DM, Russel PF, Carney KJ, Hu JS, Fuchs M, Quemada HD, Gonsalves D (2000) Resistance to squash mosaic comovirus in transgenic plants expressing its coat protein genes. Mol Breed 6:87–93
  • Park EJ, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487
  • Parkhi V, Kumar V, Campbell LAM, Bell AA, Rathore KS (2010a) Expression of Arabidopsis NPR1 in transgenic cotton confers resistance to non-efoliating isolates of Verticillium dahliae but not the defoliating isolates. J Phytopathol 158:822–825
  • Parkhi V, Kumar V, Campbell LAM, Bell AA, Shah J et al (2010b) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975
  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnol 8:939–943
  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328
  • Pic E, De la Serve BT, Tardieu F, Turc O (2002) Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol 128:236–246
  • Poehlman JM (1987) Breeding Field Crops, 3rd edn. The AVI publishing company, Inc., Westport
  • Price RGD, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotech 26:393–400
  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 2003(21):373–375
  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Res Econ 1:665–693
  • Qin YH, Qiao ZX, Liu JY (2007) Application of genetic transformation in cotton breeding (in Chinese). Acta Gossypii Sin 19:482–488
  • Rajasekaran K, Cary J, Jaynes J, Cleveland T (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554
  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, William S, Christou P, Bharathi M et al (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper. Plant J 15:469–477
  • Rao AQ, Bakhsh A, Nasir IA, Riazuddin S, Husnain T (2011) Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr J Biotechnol 10:1818–1826
  • Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibres of upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139
  • Rashid B, Zafar S, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254
  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384
  • Richter D (1998) Genetic engineering of cotton to increase fiber strength, water absorption and dye binding. In: Proceedings Beltwide Cotton Conferences. San Diego, pp 595–598
  • Sadashivappa P, Qaim M (2009) Bt cotton in India: development of benefits and the role of government seed price intervention. AgBioForum 12:172–183
  • Saeed M, Ashraf M, Akram MS, Akram NA (2009) Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) plants as affected by foliar-applied different potassium salts. J Plant Nutri Soil Sci 172:884–893
  • Satyavathi VV, Prasad V, Lakshmi G, Lakshmi S (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223
  • Shamim Z, Rashid B, Rahman S, Husnain T (2013) Expression of drought tolerance in transgenic cotton. Sci Asia 39:1–11
  • Shang-guan XX, Wang LJ, Li YE, Yun-Sheng L, Xia WU (2007) Analysis of cotton (Gossypium hirsutum L.) plants transformed with a silkworm fibroin light chain gene (in Chinese). Acta Agron Sin 33:697–702
  • Shen T, Wang JY (1990) Biochemistry (in Chinese). Higher Education Press, Beijing
  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227
  • Siebert MW, Babcock JM, Nolting S, Santos AC, Adamczyk JJ, Neese PA, King JE, Jenkins JN, McCarty J, Lorenz GM, Fromme DD, Lassiter RB (2008) Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla Entomol 91:555–565
  • Singh JA, Sohi S, Brar DS, Denhdm I, Russel D, Briddon R (1999) Management of cotton leaf curl virus disease in India. Proc. ICAC regional consultation insecticide resistance management in cotton. CCRI, Multan, pp 277–284
  • Smith EF, Towsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673
  • Song P, Allen RD (1997) Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochim Biophys Acta 1351:305–312
  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059
  • Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ (2005) Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul 24:253–273
  • Terenius O et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245
  • Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium Wilt. PLoS ONE 5:e14218
  • Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacteriummediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Org Cult 83:83–96
  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6:164–173
  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10
  • Tong XH, Daud MK, Zhu SJ (2010) Selection and characterization of a novel glyphosate-tolerant upland cotton (Gossypium hirsutum L.) mutant (R1098). Plant Breed 129:192–196
  • Townsend BJ, Poole A, Blake CJ, Llewellyn DJ (2005) Antisense suppression of a (+)-d-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol 138:516–528
  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnol 5:263–266
  • Vajhala SKC, Sadumpati VK, Nunna HR, Sateesh Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 8:1–9
  • Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403
  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620
  • Vijayan M, Chandra N (1999) Lectins. Curr Opinion Struct Biol 9:707–714
  • Vogler H, Caderas D, Mandel T, Kuhlemeier C (2003) Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol 53:267–272
  • Wang YH, Davila-Huerta G, Essenberg M (2003) 8-Hydroxy-(+)-delta-cadinene is a precursor to hemigossypol in Gossypium hirsutum. Phytochem 64:219–225
  • Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR (2004) Over-expression of gastrodia anti-fungal protein enhances verticillium wilt resistance in coloured cotton. Plant Breed 23:454–459
  • Waterhouse M, Graham M, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964
  • Wu J, Zhang X, Nie Y, Luo X (2005) Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146
  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton expressing Amaranthus caudatus agglutinin confers enhanced resistance to aphids. Plant Breed 125:390–394
  • Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28
  • Xiong LM, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36
  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant:343–352
  • Yang Y, Sherwood TA, Patte CP, Hiebert E, Poiston J (2004) EUse of tomato yellow leaf curl virus (TYLCV) Rep gene sequence to engineerTYLCVresistence in tomato. Phytopathology 94:490–496
  • Yang X, Zheng L, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86
  • Yao J, Pang Y, Qi H, Wan B, Zhao X, Kong W, Sun X, Tang K (2003) Transgenic tobacco expressing Pinellia ternate agglutinin confers enhanced resistance to aphids. Transgen Res 12:715–722
  • Yarasi B, Sadumpati V, Immanni CP, Reddy VD, Rao KV (2008) Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol 8:102
  • Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the atLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63:3741–3748
  • Zaenen I, Larebeke VN, Teuchy H, Van MM, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127
  • Zapata C, Park SH, El-Zik KM, Smith RM (1999) Transformation of a Texas cotton cultivar by using agrobacterium and the shoot apex. Theor Appl Genet 98:252–256
  • Zeng QW, Qin S, Song SQ, Zhang M, Xiao YH, Luo M, Hou L, Pei Y (2012) Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (Gossypium hirsutum L.). Plant Mol Biol Report 30:1–9
  • Zhang ZL, Chen S, Liu ZL (2004) Transformation of cotton (Gossypium hirsutum L.) with a silkworm fibroin gene to achieve strength-enhanced fiber (in Chinese). Acta Agric Jiangxi 6:15–19
  • Zhang HB, Li Y, Wang Y, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genom:1–20
  • Zhang J, Tan W, Yang X, Zhang HX (2008b) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycinebetaine in tobacco. Plant Cell Rep 27:1113–1124
  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298
  • Zhang Y, Wang X, Yang S, Chi J, Zhang G, Ma Z (2011) Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep 30:2085–2096
  • Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y (2012a) Island cotton Gbve1Gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 7:e51091
  • Zhang K, Wang J, Lian L, Fan W, Guo N, Lv S (2012b) Increased chilling tolerance following transfer of a betA gene enhancing glycinebetaine synthesis in cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 30:1158–1171
  • Zhao FY, Li YF, Xu P (2006) Agrobacterium mediated transformation of cotton (G. hirsutum L. cv. Zhongmian 35) using glyphosate as selectable marker. Biotechnol Lett 28:1199–1207
  • Zhu JK (2001) Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci 6:66–72
  • Zhu JK, Shi J, Bressan RA, Hasegawa PM (1993) Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DNA. J Plant Cell 5:341–349
  • Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 7:e38572

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4df499a7-3d1c-4e85-b853-ff7f66a632c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.