PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 2 |

Tytuł artykułu

Functional organization of the human amygdala in appetitive learning

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The amygdala is a small subcortical structure located bilaterally in medial temporal lobes. It is a key region for emotional processes and some forms of associative learning. In particular, the role of the amygdala in processing of negative emotions and aversive learning has been shown in numerous studies. However, involvement of this structure in processing of positive affect and appetitive learning is not fully understood. Previous experiments in animals are not consistent. While some authors implicate only the centromedial part of the amygdala in appetitive learning, the others suggest contribution of both centromedial and basolateral subregions. Although from the evolutionary perspective appetitive learning is equally important as aversive learning, research on the role of the human amygdala and its subregions in appetitive learning is undertaken relatively rarely and the results are not conclusive. Therefore, the aim of this review is twofold: to summarize the current knowledge in this field and to indicate and discuss the factors, which might affect the observed level of the amygdala activity during appetitive learning in humans.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

2

Opis fizyczny

p.118-127,ref.

Twórcy

autor
  • Laboratory of Psychophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
autor
  • Laboratory of Psychophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
  • Max Planck Research Group Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  • Laboratory of Psychophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland

Bibliografia

  • Aggleton JP, Passingham RE (1981) Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J Comp Physiol Psychol 95(6): 961–977.
  • Amunts K, Kedo O, Kindler  M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210(5–6): 343–352.
  • Appenzeller S, Chaloult E, Velho P, de Souza EM, Araújo VZ, Cendes F, Li LM (2006) Amygdalae calcifications associated with disease duration in lipoid proteinosis. J Neuroimaging 16(2): 154–156.
  • Bach DR, Behrens TE, Garrido  L, Weiskopf N, Dolan RJ (2011) Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J Neurosci 31(2): 618–623.
  • Baeuchl C, Meyer P, Hoppstädter  M, Diener C, Flor H (2015) Contextual fear conditioning in humans using feature‑identical contexts. Neurobiol Learn Mem 121: 1–11.
  • Ball T, Rahm B, Eickhoff SB, Schulze‑Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One 2(3): e307.
  • Bammer R (2003) Basic principles of diffusion‑weighted imaging. Eur J Radiol 45(3): 169–184.
  • Barbour T, Murphy E, Pruitt P, Eickhoff SB, Keshavan MS, Rajan U, Zajac‑Benitez C, Diwadkar VA (2010) Reduced intra‑amygdala activity to positively valenced faces in adolescent schizophrenia offspring. Schizophr Res 123(2–3): 126–136.
  • Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D, Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S, Johansen‑Berg H, Snyder  AZ, Van Essen DC, WU‑Minn HCP Consortium (2013) Function in the human connectome: task‑fMRI and individual differences in behavior. Neuroimage 80: 169–189.
  • Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3(7): 563–573. Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269(5227): 1115–1118.
  • Bedny M, Aguirre GK, Thompson‑Schill SL (2007) Item analysis in functional magnetic resonance imaging. Neuroimage 35(3): 1093–1102.
  • Bielski K, Falkiewicz  M, Kolada E, Szatkowska I (2016) Functional connectivity‑based parcellation of the human amygdala using an fMRI data from the Human Connectome Project. A resting state approach. The Fifth Biennial Conference on Resting State and Brain Connectivity, September 21–23, Vienna, Austria. http://www.restingstate.com/2016/ abstracts/ (abstract nº 17).
  • Blackford JU, Buckholtz JW, Avery SN, Zald DH (2010) A unique role for the human amygdala in novelty detection. Neuroimage 50(3): 1188–1193.
  • Boubela RN, Kalcher K, Huf  W, Seidel EM, Derntl B, Pezawas  L, Našel  C, Moser E (2015) fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep 5: 10499.
  • Braesicke K, Parkinson JA, Reekie Y, Man MS, Hopewell L, Pears A, Crofts H, Schnell CR, Roberts AC (2005) Autonomic arousal in an appetitive context in primates: a behavioural and neural analysis. Eur J Neurosci 21(6): 1733–1740.
  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3): 321–352.
  • Carey RJ, Carrera MP, Damianopoulos EN (2014) A new proposal for drug conditioning with implications for drug addiction: the Pavlovian two‑step from delay to trace conditioning. Behav Brain Res 275: 150–156.
  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome‑specific forms of pavlovian‑instrumental transfer. J Neurosci 25(4): 962–970.
  • Cox SM, Andrade A, Johnsrude IS (2005) Learning to like: a  role for human orbitofrontal cortex in conditioned reward. J Neurosci 25(10): 2733–2740.
  • Cybulska‑Klosowicz A (2016) Behavioral verification of associative learning in whiskers‑related fear conditioning in mice. Acta Neurobiol Exp (Wars) 76(2): 87–97.
  • Davis FC, Johnstone T, Mazzulla EC, Oler JA, Whalen PJ (2010) Regional response differences across the human amygdaloid complex during social conditioning. Cereb Cortex 20(3): 612–621.
  • Davis  M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1): 13–34.
  • DiFeliceantonio AG, Berridge KC (2012) Which cue to ‘want’? Opioid stimulation of central amygdala makes goal‑trackers show stronger goal‑tracking, just as sign‑trackers show stronger sign‑tracking. Behav Brain Res 230(2): 399–408.
  • Donnet S, Lavielle M, Poline J‑B (2006) Are fMRI event‑related response constant in time? A model selection answer. Neuroimage 31(3): 1169–1176.
  • Entis JJ, Doerga P, Barrett LF, Dickerson BC (2012) A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra‑high resolution MRI. Neuroimage 60(2): 1226–1235.
  • Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala‑dependent mechanisms of emotional learning. Ann N Y Acad Sci 985: 233–250.
  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36(2–3): 129–138.
  • Fischer H, Wright CI, Whalen PJ, McInerney SC, Shin LM, Rauch SL (2003) Brain habituation during repeated exposure to fearful and neutral faces: a functional MRI study. Brain Res Bull 59(5): 387–392.
  • Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Alzheimer’s Disease Neuroimaging Initiative (2013) Brain changes in older adults at very low risk for Alzheimer’s disease. J Neurosci 33(19): 8237–8242.
  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9): 700–711.
  • Freeman JB, Stolier RM, Ingbretsen ZA, Hehman EA (2014) Amygdala responsivity to high‑level social information from unseen faces. J Neurosci 34(32): 10573–10581.
  • Freese JL, Amaral DG (2009) Neuroanatomy of the primate amygdala. In: The Human Amygdala (Whalen PJ, Phelps EA, Eds). The Guilford Press, New York, USA. p. 3–42.
  • Frühholz S, Grandjean D (2013) Amygdala subregions differentially respond and rapidly adapt to threatening voices. Cortex 49(5): 1394–1403.
  • Gaffan EA, Gaffan D, Harrison S (1988) Disconnection of the amygdala from visual association cortex impairs visual reward‑association learning in monkeys. J Neurosci 8(9): 3144–3150.
  • Gottfried JA, O’Doherty J, Dolan RJ (2002) Appetitive and aversive olfactory learning in humans studied using event‑related functional magnetic resonance imaging. J Neurosci 22(24): 10829–10837.
  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301(5636): 1104–1107.
  • Holland PC, Hatfield T, Gallagher M (2001) Rats with basolateral amygdala lesions show normal increases in conditioned stimulus processing but reduced conditioned potentiation of eating. Behav Neurosci 115(4): 945–950.
  • Hortensius R, Terburg D, Morgan B, Stein DJ, van Honk J, de Gelder B (2016) The role of the basolateral amygdala in the perception of faces in natural contexts. Philos Trans R Soc Lond B Biol Sci 371(1693): 20150376.
  • Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra‑amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172(1): 13–20.
  • Izquierdo A, Murray EA (2007) Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J Neurosci 27(5): 1054–1062.
  • Kerr KL, Avery JA, Barcalow JC, Moseman SE, Bodurka J, Bellgowan PS, Simmons WK (2015) Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation. Soc Cogn Affect Neurosci 10(1): 36–42.
  • Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016) Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci 19(12): 1636–1646.
  • Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S (2017) Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93(6): 1464–1479.
  • Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B, Ott U, Burkart J, Vaitl D (2003) Anticipation of reward in a  nonaversive differential conditioning paradigm and the brain reward system: an event‑related fMRI study. Neuroimage 20(2): 1086–1095.
  • Klucken T, Wehrum S, Schweckendiek J, Merz CJ, Hennig J, Vaitl D, Stark R (2013) The 5‑HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Hum Brain Mapp 34(10): 2549–2560.
  • Knapska E, Lioudyno  V, Kiryk A, Mikosz  M, Górkiewicz T, Michaluk P, Gawlak  M, Chaturvedi  M, Mochol G, Balcerzyk  M, Wojcik DK, Wilczynski GM, Kaczmarek L (2013) Reward learning requires activity of matrix metalloproteinase‑9 in the central amygdala. J Neurosci 33(36): 14591–14600.
  • Knapska E, Macias  M, Mikosz  M, Nowak A, Owczarek D, Wawrzyniak  M, Pieprzyk  M, Cymerman IA, Werka T, Sheng  M, Maren S, Jaworski J, Kaczmarek  L (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 109(42): 17093–17098.
  • Knapska E, Radwanska K, Werka T, Kaczmarek L (2007) Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 87(4): 1113–1173.
  • Knapska E, Walasek G, Nikolaev E, Neuhäusser‑Wespy F, Lipp HP, Kaczmarek  L, Werka T (2006) Differential involvement of the central amygdala in appetitive versus aversive learning. Learn Mem 13(2): 192–200.
  • László K, Kovács A, Zagoracz O, Ollmann T, Péczely L, Kertes E, Lacy DG, Lénárd L (2016) Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav Brain Res 296: 279–285.
  • Mahler SV, Berridge KC (2012) What and when to “want”? Amygdala‑based focusing of incentive salience upon sugar and sex. Psychopharmacol (Berl) 221(3): 407–426.
  • Mai JK, Paxinos G, Voss T (2008) Atlas of the Human Brain. Elsevier/ Academic Press, San Diego, CA, USA. Málková L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J Neurosci 17(15): 6011–6020.
  • McDannald  M, Kerfoot E, Gallagher  M, Holland PC (2004) Amygdala central nucleus function is necessary for learning but not expression of conditioned visual orienting. Eur J Neurosci 20(1): 240–248.
  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55(3): 257–332.
  • Metereau E, Dreher JC (2013) Cerebral correlates of salient prediction error for different rewards and punishments. Cereb Cortex 23(2): 477–487.
  • Mishra A, Rogers BP, Chen LM, Gore JC (2014) Functional connectivity‑based parcellation of amygdala using self‑organized mapping: a data driven approach. Hum Brain Mapp 35(4): 1247–1260.
  • Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5): 527–539.
  • Morris JS, Buchel C, Dolan RJ (2001) Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning. Neuroimage 13(6 Pt 1): 1044–1052.
  • Moscarello JM, LeDoux JE (2013) The contribution of the amygdala to aversive and appetitive pavlovian processes. Emotion Review 5(3): 248–253.
  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5): 815–826.
  • Parkinson JA, Robbins TW, Everitt BJ (2000) Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur J Neurosci 12: 405–413.
  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439(7078): 865–870.
  • Pessoa L (2010) Emotion and cognition and the amygdala: from “what is it?” to “what’s to be done?”. Neuropsychologia 48(12): 3416–3429.
  • Pressman PS, Noniyeva Y, Bott N, Dutt S, Sturm  V, Miller BL, Kramer JH (2016) Comparing volume loss in neuroanatomical regions of emotion versus regions of cognition in healthy aging. PLoS One 11(8): e0158187.
  • Prévost C, Liljeholm M, Tyszka JM, O’Doherty JP (2012) Neural correlates of specific and general Pavlovian‑to‑Instrumental Transfer within human amygdalar subregions: a high‑resolution fMRI study. J Neurosci 32(24): 8383–8390.
  • Prévost C, McCabe JA, Jessup RK, Bossaerts P, O’Doherty JP (2011) Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning. Eur J Neurosci 34(1): 134–145.
  • Prévost C, McNamee D, Jessup RK, Bossaerts P, O’Doherty JP (2013) Evidence for model‑based computations in the human amygdala during Pavlovian conditioning. PLoS Comput Biol 9(2): e1002918.
  • Puschmann S, Brechmann A, Thiel CM (2013) Learning‑dependent plasticity in human auditory cortex during appetitive operant conditioning. Hum Brain Mapp 34(11): 2841–2851.
  • Quirk GJ, Armony JL, LeDoux JE (1997) Fear conditioning enhances different temporal components of tone‑evoked spike trains in auditory cortex and lateral amygdala. Neuron 19(3): 613–624.
  • Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4(7): 724–731.
  • Ross SE, Lehmann Levin E, Itoga CA, Schoen CB, Selmane R, Aldridge JW (2016) Deep brain stimulation in the central nucleus of the amygdala decreases ‘wanting’ and ‘liking’ of food rewards. Eur J  Neurosci 44(7): 2431–2445.
  • Sander D, Grafman J, Zalla T (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14(4): 303–316.
  • Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, McKee A, Frosch MP, Fischl B, Augustinack JC, Alzheimer’s Disease Neuroimaging Initiative (2017) High‑resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage S1053–S8119(17): 30342–30347.
  • Saygin ZM, Osher DE, Augustinack J, Fischl B, Gabrieli JD (2011) Connectivity‑based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 56(3): 1353–1361.
  • Siebert M, Markowitsch HJ, Bartel P (2003) Amygdala, affect and cognition: evidence from 10 patients with Urbach‑Wiethe disease. Brain 126(Pt 12): 2627–2637.
  • Södersten P, Bergh C, Zandian M (2006) Understanding eating disorders. Horm Behav 50(4): 572–578.
  • Solano‑Castiella E, Anwander A, Lohmann G, Weiss  M, Docherty C, Geyer  S, Reimer E, Friederici AD, Turner R (2010) Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage 49(4): 2958–2965
  • Spiegler B J, Mishkin  M (1981) Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus‑reward associations. Behav Brain Res 3(3): 303–317.
  • Stefanacci  L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451(4): 301–323.
  • Swanson LW, Petrovich GD (1998) What is the amygdala?. Trends Neurosci 21(8): 323–331.
  • Tyszka JM, Pauli WM (2016) In vivo delineation of subdivisions of the human amygdaloid complex in a high‑resolution group template. Hum Brain Mapp 37(11): 3979–3998.
  • Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural substrates of goal‑directed learning in the human brain. J  Neurosci 27(15): 4019–4026.
  • Wedig MM, Rauch SL, Albert MS, Wright CI (2005) Differential amygdala habituation to neutral faces in young and elderly adults. Neurosci Lett 385(2): 114–119.
  • Westfall J, Nichols T, Yarkoni T (2016) Fixing the stimulus‑as‑fixed‑effect fallacy in task fMRI. Wellcome Open Res 1: 23.
  • Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28(1): 7–12.
  • Wright CI (2009) The human amygdala in normal aging and Alzheimer’s disease. In: The Human Amygdala (Whalen PJ, Phelps EA, Eds). The Guilford Press, New York, USA. p. 382–405.
  • Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 41(1): 88–123.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4b66fd52-7273-44b0-8d44-79f432bc83a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.